This project is from the team Salt Bae, which was awarded with the First Prize in the Global AI Innovation Challenge 2021 - Intelligent Weather Forecast for Better life.
SaltBae is an AI-powered salt production prediction tool for smallholder farmer resilience. By leveraging weather and satellite data, we can empower salt farmers to be more data-driven to increase the sustainability of the business and community.
1. Intelligent Sea Surface Salinity Detection
Using data from satellites (Geographical Information System) to measure sea surface salinity and recommend areas with high salinity to salt farmers
2. Intelligent Salt Production Prediction
Using aggregated data from sea surface salinity detection, weather forecasting and historical salt production level, predict daily salt precipitation rate
3. Farmer's Decision Support System
Data-driven recommendation to increase salt farmers production capacity E.g: where's the most suitable place to extend the salt ponds?
Salt farming is still an overlooked and underserved industry by technology. Most farmers operate with no proper data/information exist to assist their business decision-making. We are combining NOAA GSOD Dataset for the weather data and ESA Sea Surface Salinity Data to answer the question: How can we predict daily salt precipitation rate given the weather, location, and size of farmer's pond using machine learning and give actionable insight to increase their salt-production capacity? And that is SaltBae.
1. Elastic Compute Service (ECS)
Elastic Compute Service was used as an instance to host our application (both front-end and backend).
2. ApsaraDB
ApsaraDB was used as our relational database to store credentials, user info, and salt production performance.
3. Domain Name
Domain Name was used to manage www.saltbae.xyz domain name system.
4. Machine Learning Platform for AI (PAI)
Machine Learning Platform for AI was used to train the salt productivity rate model. We also utilized PAI Studio to frequently update our model
Object Storage Service was used as an instance to store our machine learning model for salt productivity rate and credit scoring model
6. DataWorks
DataWorks was used to orchestrate our machine learning model from training to deployment. Also being used to regularly update our dataset
Hi, we are team Salt Bae from Indonesia; we are both AI enthusiasts with a unique combination of expertise in computer vision, machine learning, and analytical chemistry. Christian is a machine learning engineer with experience in e-commerce, OTA, and fintech companies. Aderian is a pharmacist with experience in a big pharma company in Indonesia. Aderian mostly works on the research, methodology and modeling while Christian works on the product and business analysis.
107 posts | 18 followers
FollowAsiaStar Focus - July 1, 2022
Alibaba Cloud Project Hub - March 30, 2022
Alibaba Clouder - May 11, 2020
Alibaba Cloud Project Hub - January 20, 2021
Alibaba Clouder - December 12, 2017
Alibaba Clouder - May 17, 2019
107 posts | 18 followers
FollowAccelerate AI-driven business and AI model training and inference with Alibaba Cloud GPU technology
Learn MoreApply the latest Reinforcement Learning AI technology to your Field Service Management (FSM) to obtain real-time AI-informed decision support.
Learn MoreA high-quality personalized recommendation service for your applications.
Learn MoreFrom immersive stadiums to data analytics, our sports solutions empower teams, athletes, and fans through the digital transformation of the sports industry
Learn MoreMore Posts by Alibaba Cloud Project Hub