All Products
Search
Document Center

Alibaba Cloud Model Studio:Text extraction (Qwen-OCR)

Last Updated:Feb 04, 2026

Qwen-OCR is a visual understanding model that extracts text and parses structured data from various images, such as scanned documents, tables, and receipts. It supports multiple languages and can perform advanced functions, including information extraction, table parsing, and formula recognition, based on specific task instructions.

Try it online: Model Studio (Singapore), Model Studio (Virginia), or Model Studio (Beijing)

Examples

Input image

Recognition result

Recognize multiple languages

image

INTERNATIONAL

MOTHER LANGUAGE

DAY

Привет!

你好!

Bonjour!

Merhaba!

Ciao!

Hello!

Ola!

בר מולד

Salam!

Recognize skewed images

image

Product Introduction

Imported fiber filaments from South Korea.

6941990612023

Item No.: 2023

Locate text position

img_1

high-precision recognition task supports text localization.

Visualization of localization

img_1_location

See the FAQ on how to draw the bounding box of each text line onto the original image.

Availability

Supported regions

  • Singapore: Use the API key for this region.

  • Virginia: Use the API key for this region.

  • Beijing: Use the API key for this region.

Supported models

International

In international deployment mode, the endpoint and data storage are both located in the Singapore region. Model inference compute resources are dynamically scheduled worldwide (excluding Mainland China).

Model

Version

Context window

Max input

Max output

Input price

Output price

Free quota

(Note)

(tokens)

(per 1M tokens)

qwen-vl-ocr

Matches the capabilities of qwen-vl-ocr-2025-11-20.

Stable

38,192

30,000

Max per image: 30,000

8,192

$0.07

$0.16

1 million input tokens each

Valid for 90 days after you activate Model Studio

qwen-vl-ocr-2025-11-20

Also known as qwen-vl-ocr-1120
Based on the Qwen3-VL architecture, this model provides significantly improved document parsing and text localization.

Snapshot

Global

In global deployment mode, the endpoint and data storage are both located in the US (Virginia) region. Model inference compute resources are dynamically scheduled worldwide.

Model

Version

Context window

Max input

Max output

Input price

Output price

(tokens)

(per 1M tokens)

qwen-vl-ocr

Matches the capabilities of qwen-vl-ocr-2025-11-20.

Stable

38,192

30,000

Max of 30,000 per image.

8,192

$0.07

$0.16

qwen-vl-ocr-2025-11-20

Also known as qwen-vl-ocr-1120.
Based on the Qwen3-VL architecture, this model significantly improves document parsing and text localization capabilities.

Snapshot

Mainland China

In Mainland China deployment mode, the endpoint and data storage are both located in the Beijing region. Model inference compute resources are limited to Mainland China.

Model

Version

Context window

Max input

Max output

Input price

Output price

Free quota

(Note)

(tokens)

(per 1M tokens)

qwen-vl-ocr

Matches the capabilities of qwen-vl-ocr-2025-08-28.
Batch calls are available at half price.

Stable

38,192

30,000

Max per image: 30,000

8,192

$0.043

$0.072

No free quota

qwen-vl-ocr-latest

Always matches the capabilities of the latest version.

Latest

qwen-vl-ocr-2025-11-20

Also known as qwen-vl-ocr-1120.
Based on the Qwen3-VL architecture, this model significantly improves document parsing and text localization capabilities.

Snapshot

qwen-vl-ocr-2025-08-28

Also known as qwen-vl-ocr-0828.

34,096

4,096

$0.717

$0.717

qwen-vl-ocr-2025-04-13

Also known as qwen-vl-ocr-0413.

qwen-vl-ocr-2024-10-28

Also known as qwen-vl-ocr-1028.
qwen-vl-ocr, qwen-vl-ocr-2025-04-13, and qwen-vl-ocr-2025-08-28 models, the max_tokens parameter (maximum output length) defaults to 4096. To increase this value to a range of 4097 to 8192, you can send an email to modelstudio@service.aliyun.com and provide the following information: your Alibaba Cloud account ID, image type (such as document images, e-commerce images, or contracts), model name, estimated Queries Per Second (QPS) and total daily requests, and the percentage of requests where the model output length exceeds 4096 tokens.

Example code for manually estimating image tokens (for budget reference only)

Formula: Image tokens = (h_bar * w_bar) / token_pixels + 2.

  • h_bar * w_bar represents the dimensions of the scaled image. The model pre-processes the image by scaling it to a specific pixel limit. This limit depends on the value of the max_pixels parameter.

  • token_pixels represents the pixel value per Token.

    • For qwen-vl-ocr, qwen-vl-ocr-2025-11-20, and qwen-vl-ocr-latest, this value is fixed at 32*32 (which is 1024).

    • For other models, this value is fixed at 28*28 (which is 784).

The following code demonstrates the approximate image scaling logic that the model uses. You can use this code to estimate the token count for an image. The actual billing is based on the API response.

import math
from PIL import Image

def smart_resize(image_path, min_pixels, max_pixels):
    """
    Pre-process an image.

    Parameters:
        image_path: The path to the image.
    """
    # Open the specified PNG image file.
    image = Image.open(image_path)

    # Get the original dimensions of the image.
    height = image.height
    width = image.width
    # Adjust the height to be a multiple of 28 or 32.
    h_bar = round(height / 32) * 32
    # Adjust the width to be a multiple of 28 or 32.
    w_bar = round(width / 32) * 32

    # Scale the image to adjust the total number of pixels to be within the range [min_pixels, max_pixels].
    if h_bar * w_bar > max_pixels:
        beta = math.sqrt((height * width) / max_pixels)
        h_bar = math.floor(height / beta / 32) * 32
        w_bar = math.floor(width / beta / 32) * 32
    elif h_bar * w_bar < min_pixels:
        beta = math.sqrt(min_pixels / (height * width))
        h_bar = math.ceil(height * beta / 32) * 32
        w_bar = math.ceil(width * beta / 32) * 32
    return h_bar, w_bar


# Replace xxx/test.png with the path to your local image.
h_bar, w_bar = smart_resize("xxx/test.png", min_pixels=32 * 32 * 3, max_pixels=8192 * 32 * 32)
print(f"The scaled image dimensions are: height {h_bar}, width {w_bar}")

# Calculate the number of image tokens: total pixels divided by 32 * 32.
token = int((h_bar * w_bar) / (32 * 32))

# <|vision_bos|> and <|vision_eos|> are visual markers. Each is counted as 1 token.
print(f"Total number of image tokens: {token + 2}")

Preparations

  • You have created an API key and set the API key as an environment variable.

  • If you call the model using the OpenAI SDK or DashScope SDK, you must install the latest version of the SDK. The minimum version for the DashScope Python SDK is 1.22.2, and the minimum version for the Java SDK is 2.21.8.

    • DashScope SDK

      • Advantages: Supports all advanced features, such as image rotation correction and built-in OCR tasks. It provides a complete feature set and a simple call method.

      • Scenarios: Projects that require full functionality.

    • OpenAI compatible SDK

      • Advantages: Eases migration for users who already use the OpenAI SDK or its ecosystem tools.

      • Limitations: Does not support calling advanced features, such as image rotation correction and built-in OCR tasks, directly with parameters. You must manually simulate these features by creating complex prompts and then parsing the output.

      • Scenarios: Projects that already have an OpenAI integration and do not rely on advanced features exclusive to DashScope.

Getting started

The following example extracts key information from a train ticket image (URL) and returns the information in JSON format. For more information, see how to pass a local file and image limitations.

OpenAI compatible

Python

from openai import OpenAI
import os

PROMPT_TICKET_EXTRACTION = """
Please extract the invoice number, train number, departure station, destination station, departure date and time, seat number, seat type, ticket price, ID card number, and passenger name from the train ticket image.
Extract the key information accurately. Do not omit information or fabricate false information. Replace any single character that is blurry or obscured by glare with a question mark (?).
Return the data in JSON format: {'Invoice Number': 'xxx', 'Train Number': 'xxx', 'Departure Station': 'xxx', 'Destination Station': 'xxx', 'Departure Date and Time': 'xxx', 'Seat Number': 'xxx', 'Seat Type': 'xxx', 'Ticket Price': 'xxx', 'ID Card Number': 'xxx', 'Passenger Name': 'xxx'}
"""

try:
    client = OpenAI(
        # API keys are region-specific. To get an API key, see https://www.alibabacloud.com/help/en/model-studio/get-api-key
        # If you have not configured an environment variable, replace the following line with your Model Studio API key: api_key="sk-xxx",
        api_key=os.getenv("DASHSCOPE_API_KEY"),
        # The following is the base URL for the Singapore region. If you use a model in the US (Virginia) region, replace base_url with https://dashscope-us.aliyuncs.com/compatible-mode/v1
        # If you use a model in the China (Beijing) region, replace base_url with https://dashscope.aliyuncs.com/compatible-mode/v1
        base_url="https://dashscope-intl.aliyuncs.com/compatible-mode/v1",
    )
    completion = client.chat.completions.create(
        model="qwen-vl-ocr-2025-11-20",
        messages=[
            {
                "role": "user",
                "content": [
                    {
                        "type": "image_url",
                        "image_url": {"url":"https://img.alicdn.com/imgextra/i2/O1CN01ktT8451iQutqReELT_!!6000000004408-0-tps-689-487.jpg"},
                        # The minimum pixel threshold for the input image. If the image is smaller than this value, it is scaled up until the total pixels exceed min_pixels.
                        "min_pixels": 32 * 32 * 3,
                        # The maximum pixel threshold for the input image. If the image is larger than this value, it is scaled down until the total pixels are below max_pixels.
                        "max_pixels": 32 * 32 * 8192
                    },
                    # The model supports passing a prompt in the text field. If no prompt is passed, the default prompt is used: Please output only the text content from the image without any additional descriptions or formatting.    
                    {"type": "text",
                     "text": PROMPT_TICKET_EXTRACTION}
                ]
            }
        ])
    print(completion.choices[0].message.content)
except Exception as e:
    print(f"Error message: {e}")

Node.js

import OpenAI from 'openai';

// Define the prompt to extract train ticket information.
const PROMPT_TICKET_EXTRACTION = `
Please extract the invoice number, train number, departure station, destination station, departure date and time, seat number, seat type, ticket price, ID card number, and passenger name from the train ticket image.
Extract the key information accurately. Do not omit information or fabricate false information. Replace any single character that is blurry or obscured by glare with a question mark (?).
Return the data in JSON format: {'Invoice Number': 'xxx', 'Train Number': 'xxx', 'Departure Station': 'xxx', 'Destination Station': 'xxx', 'Departure Date and Time': 'xxx', 'Seat Number': 'xxx', 'Seat Type': 'xxx', 'Ticket Price': 'xxx', 'ID Card Number': 'xxx', 'Passenger Name': 'xxx'}
`;

const openai = new OpenAI({
  // API keys are region-specific. To get an API key, see https://www.alibabacloud.com/help/en/model-studio/get-api-key
  // If you have not configured an environment variable, replace the following line with your Model Studio API key: apiKey: "sk-xxx",
  apiKey: process.env.DASHSCOPE_API_KEY,
 // The following is the base URL for the Singapore region. If you use a model in the US (Virginia) region, replace baseURL with https://dashscope-us.aliyuncs.com/compatible-mode/v1
 // If you use a model in the China (Beijing) region, replace baseURL with https://dashscope.aliyuncs.com/compatible-mode/v1
  baseURL: 'https://dashscope-intl.aliyuncs.com/compatible-mode/v1',
});

async function main() {
  const response = await openai.chat.completions.create({
    model: 'qwen-vl-ocr-2025-11-20',
    messages: [
      {
        role: 'user',
        content: [
          // The model supports passing a prompt in the following text field. If no prompt is passed, the default prompt is used: Please output only the text content from the image without any additional descriptions or formatting.
          { type: 'text', text: PROMPT_TICKET_EXTRACTION},
          {
            type: 'image_url',
            image_url: {
              url: 'https://img.alicdn.com/imgextra/i2/O1CN01ktT8451iQutqReELT_!!6000000004408-0-tps-689-487.jpg',
            },
              //  The minimum pixel threshold for the input image. If the image is smaller than this value, it is scaled up until the total pixels exceed min_pixels.
              min_pixels: 32 * 32 * 3,
             // The maximum pixel threshold for the input image. If the image is larger than this value, it is scaled down until the total pixels are below max_pixels.
             max_pixels: 32 * 32 * 8192
          }
        ]
      }
    ],
  });
  console.log(response.choices[0].message.content)
}

main();

curl

# ======= Important =======
# API keys are region-specific. To get an API key, see https://www.alibabacloud.com/help/en/model-studio/get-api-key
# The following is the base URL for the Singapore region. If you use a model in the US (Virginia) region, replace the base URL with https://dashscope-us.aliyuncs.com/compatible-mode/v1/chat/completions
# If you use a model in the China (Beijing) region, replace the base URL with https://dashscope.aliyuncs.com/compatible-mode/v1/chat/completions
# === Delete this comment before running ===

curl -X POST https://dashscope-intl.aliyuncs.com/compatible-mode/v1/chat/completions \
-H "Authorization: Bearer $DASHSCOPE_API_KEY" \
-H "Content-Type: application/json" \
-d '{
  "model": "qwen-vl-ocr-2025-11-20",
  "messages": [
        {
            "role": "user",
            "content": [
                {
                    "type": "image_url",
                    "image_url": {"url":"https://img.alicdn.com/imgextra/i2/O1CN01ktT8451iQutqReELT_!!6000000004408-0-tps-689-487.jpg"},
                    "min_pixels": 3072,
                    "max_pixels": 8388608
                },
                {"type": "text", "text": "Please extract the invoice number, train number, departure station, destination station, departure date and time, seat number, seat type, ticket price, ID card number, and passenger name from the train ticket image. Extract the key information accurately. Do not omit information or fabricate false information. Replace any single character that is blurry or obscured by glare with a question mark (?). Return the data in JSON format: {'Invoice Number': 'xxx', 'Train Number': 'xxx', 'Departure Station': 'xxx', 'Destination Station': 'xxx', 'Departure Date and Time': 'xxx', 'Seat Number': 'xxx', 'Seat Type': 'xxx', 'Ticket Price': 'xxx', 'ID Card Number': 'xxx', 'Passenger Name': 'xxx'}"}
            ]
        }
    ]
}'

Example response

{
  "choices": [{
    "message": {
      "content": "```json\n{\n    \"Invoice Number\": \"24329116804000\",\n    \"Train Number\": \"G1948\",\n    \"Departure Station\": \"Nanjing South Station\",\n    \"Destination Station\": \"Zhengzhou East Station\",\n    \"Departure Date and Time\": \"2024-11-14 11:46\",\n    \"Seat Number\": \"Car 04, Seat 12A\",\n    \"Seat Type\": \"Second Class\",\n    \"Ticket Price\": \"¥337.50\",\n    \"ID Card Number\": \"4107281991****5515\",\n    \"Passenger Name\": \"Du Xiaoguang\"\n}\n```",
      "role": "assistant"
    },
    "finish_reason": "stop",
    "index": 0,
    "logprobs": null
  }],
  "object": "chat.completion",
  "usage": {
    "prompt_tokens": 606,
    "completion_tokens": 159,
    "total_tokens": 765
  },
  "created": 1742528311,
  "system_fingerprint": null,
  "model": "qwen-vl-ocr-latest",
  "id": "chatcmpl-20e5d9ed-e8a3-947d-bebb-c47ef1378598"
}

DashScope

Python

import os
import dashscope

PROMPT_TICKET_EXTRACTION = """
Please extract the invoice number, train number, departure station, destination station, departure date and time, seat number, seat type, ticket price, ID card number, and passenger name from the train ticket image.
Extract the key information accurately. Do not omit information or fabricate false information. Replace any single character that is blurry or obscured by glare with a question mark (?).
Return the data in JSON format: {'Invoice Number': 'xxx', 'Train Number': 'xxx', 'Departure Station': 'xxx', 'Destination Station': 'xxx', 'Departure Date and Time': 'xxx', 'Seat Number': 'xxx', 'Seat Type': 'xxx', 'Ticket Price': 'xxx', 'ID Card Number': 'xxx', 'Passenger Name': 'xxx'}
"""

# The following is the base URL for the Singapore region. If you use a model in the US (Virginia) region, replace base_url with https://dashscope-us.aliyuncs.com/api/v1
# If you use a model in the China (Beijing) region, replace base_url with https://dashscope.aliyuncs.com/api/v1
dashscope.base_http_api_url = 'https://dashscope-intl.aliyuncs.com/api/v1'
messages = [{
            "role": "user",
            "content": [{
                "image": "https://img.alicdn.com/imgextra/i2/O1CN01ktT8451iQutqReELT_!!6000000004408-0-tps-689-487.jpg",
                # The minimum pixel threshold for the input image. If the image is smaller than this value, it is scaled up until the total pixels exceed min_pixels.
                "min_pixels": 32 * 32 * 3,
                 # The maximum pixel threshold for the input image. If the image is larger than this value, it is scaled down until the total pixels are below max_pixels.
                "max_pixels": 32 * 32 * 8192,
                # Specifies whether to enable automatic image rotation.
                "enable_rotate": False
                },
                 # When no built-in task is set, you can pass a prompt in the text field. If no prompt is passed, the default prompt is used: Please output only the text content from the image without any additional descriptions or formatting.
                {"type": "text", "text": PROMPT_TICKET_EXTRACTION}]
        }]
try:
    response = dashscope.MultiModalConversation.call(
        # API keys are region-specific. To get an API key, see https://www.alibabacloud.com/help/en/model-studio/get-api-key
        # If you have not configured an environment variable, replace the following line with your Model Studio API key: api_key="sk-xxx",
        api_key=os.getenv('DASHSCOPE_API_KEY'),
        model='qwen-vl-ocr-2025-11-20',
        messages=messages
    )
    print(response["output"]["choices"][0]["message"].content[0]["text"])
except Exception as e:
    print(f"An error occurred: {e}")

Java

import java.util.Arrays;
import java.util.Collections;
import java.util.Map;
import java.util.HashMap;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversation;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationParam;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationResult;
import com.alibaba.dashscope.common.MultiModalMessage;
import com.alibaba.dashscope.common.Role;
import com.alibaba.dashscope.exception.ApiException;
import com.alibaba.dashscope.exception.NoApiKeyException;
import com.alibaba.dashscope.exception.UploadFileException;
import com.alibaba.dashscope.utils.Constants;

public class Main {

    static {
            // The following is the base URL for the Singapore region. If you use a model in the US (Virginia) region, replace base_url with https://dashscope-us.aliyuncs.com/api/v1
            // If you use a model in the China (Beijing) region, replace base_url with https://dashscope.aliyuncs.com/api/v1
            Constants.baseHttpApiUrl="https://dashscope-intl.aliyuncs.com/api/v1";
        }
        
    public static void simpleMultiModalConversationCall()
            throws ApiException, NoApiKeyException, UploadFileException {
        MultiModalConversation conv = new MultiModalConversation();
        Map<String, Object> map = new HashMap<>();
        map.put("image", "https://img.alicdn.com/imgextra/i2/O1CN01ktT8451iQutqReELT_!!6000000004408-0-tps-689-487.jpg");
        // The maximum pixel threshold for the input image. If the image is larger than this value, it is scaled down until the total pixels are below max_pixels.
        map.put("max_pixels", 8388608);
        // The minimum pixel threshold for the input image. If the image is smaller than this value, it is scaled up until the total pixels exceed min_pixels.
        map.put("min_pixels", 3072);
        // Specifies whether to enable automatic image rotation.
        map.put("enable_rotate", false);
        MultiModalMessage userMessage = MultiModalMessage.builder().role(Role.USER.getValue())
                .content(Arrays.asList(
                        map,
                        // When no built-in task is set, you can pass a prompt in the text field. If no prompt is passed, the default prompt is used: Please output only the text content from the image without any additional descriptions or formatting.
                        Collections.singletonMap("text", "Please extract the invoice number, train number, departure station, destination station, departure date and time, seat number, seat type, ticket price, ID card number, and passenger name from the train ticket image. Extract the key information accurately. Do not omit information or fabricate false information. Replace any single character that is blurry or obscured by glare with a question mark (?). Return the data in JSON format: {'Invoice Number': 'xxx', 'Train Number': 'xxx', 'Departure Station': 'xxx', 'Destination Station': 'xxx', 'Departure Date and Time': 'xxx', 'Seat Number': 'xxx', 'Seat Type': 'xxx', 'Ticket Price': 'xxx', 'ID Card Number': 'xxx', 'Passenger Name': 'xxx'}"))).build();
        MultiModalConversationParam param = MultiModalConversationParam.builder()
                // API keys are region-specific. To get an API key, see https://www.alibabacloud.com/help/en/model-studio/get-api-key
                // If you have not configured an environment variable, replace the following line with your Model Studio API key: .apiKey("sk-xxx")
                .apiKey(System.getenv("DASHSCOPE_API_KEY"))
                .model("qwen-vl-ocr-2025-11-20")
                .message(userMessage)
                .build();
        MultiModalConversationResult result = conv.call(param);
        System.out.println(result.getOutput().getChoices().get(0).getMessage().getContent().get(0).get("text"));
    }

    public static void main(String[] args) {
        try {
            simpleMultiModalConversationCall();
        } catch (ApiException | NoApiKeyException | UploadFileException e) {
            System.out.println(e.getMessage());
        }
        System.exit(0);
    }
}

curl

# ======= Important =======
# API keys are region-specific. To get an API key, see https://www.alibabacloud.com/help/en/model-studio/get-api-key
# The following is the base URL for the Singapore region. If you use a model in the US (Virginia) region, replace the base URL with https://dashscope-us.aliyuncs.com/api/v1/services/aigc/multimodal-generation/generation
# If you use a model in the China (Beijing) region, replace the base URL with https://dashscope.aliyuncs.com/api/v1/services/aigc/multimodal-generation/generation
# === Delete this comment before running ===

curl --location 'https://dashscope-intl.aliyuncs.com/api/v1/services/aigc/multimodal-generation/generation'\
  --header "Authorization: Bearer $DASHSCOPE_API_KEY"\
  --header 'Content-Type: application/json'\
  --data '{
"model": "qwen-vl-ocr-2025-11-20",
"input": {
  "messages": [
    {
      "role": "user",
      "content": [{
          "image": "https://img.alicdn.com/imgextra/i2/O1CN01ktT8451iQutqReELT_!!6000000004408-0-tps-689-487.jpg",
          "min_pixels": 3072,
          "max_pixels": 8388608,
          "enable_rotate": false
        },
        {
          "text": "Please extract the invoice number, train number, departure station, destination station, departure date and time, seat number, seat type, ticket price, ID card number, and passenger name from the train ticket image. Extract the key information accurately. Do not omit information or fabricate false information. Replace any single character that is blurry or obscured by glare with a question mark (?). Return the data in JSON format: {'Invoice Number': 'xxx', 'Train Number': 'xxx', 'Departure Station': 'xxx', 'Destination Station': 'xxx', 'Departure Date and Time': 'xxx', 'Seat Number': 'xxx', 'Seat Type': 'xxx', 'Ticket Price': 'xxx', 'ID Card Number': 'xxx', 'Passenger Name': 'xxx'}"
        }
      ]
    }
  ]
}
}'

Example response

{
  "output": {
    "choices": [{
      "finish_reason": "stop",
      "message": {
        "role": "assistant",
        "content": [{
          "text": "```json\n{\n    \"Invoice Number\": \"24329116804000\",\n    \"Train Number\": \"G1948\",\n    \"Departure Station\": \"Nanjing South Station\",\n    \"Destination Station\": \"Zhengzhou East Station\",\n    \"Departure Date and Time\": \"2024-11-14 11:46\",\n    \"Seat Number\": \"Car 04, Seat 12A\",\n    \"Seat Type\": \"Second Class\",\n    \"Ticket Price\": \"¥337.50\",\n    \"ID Card Number\": \"4107281991****5515\",\n    \"Passenger Name\": \"Du Xiaoguang\"\n}\n```"
        }]
      }
    }]
  },
  "usage": {
    "total_tokens": 765,
    "output_tokens": 159,
    "input_tokens": 606,
    "image_tokens": 427
  },
  "request_id": "b3ca3bbb-2bdd-9367-90bd-f3f39e480db0"
}

Call built-in tasks

To simplify calls in specific scenarios, the models (except for qwen-vl-ocr-2024-10-28) include several built-in tasks.

How to use:

  • Dashscope SDK: You do not need to design and pass a Prompt. The model uses a fixed Prompt internally. Set the ocr_options parameter to call the built-in task.

  • OpenAI compatible SDK: You must manually enter the Prompt specified for the task.

The following table lists the value of task, the specified Prompt, the output format, and an example for each built-in task:

High-precision recognition

We recommend model versions later than qwen-vl-ocr-2025-08-28 or the latest version to call the high-precision recognition task. This task has the following features:

  • Recognizes and extracts text content.

  • Detects the position of text by locating text lines and outputting their coordinates.

For more information about how to draw the bounding box on the original image after you obtain the coordinates of the text bounding box, see the FAQ.

Value of task

Specified prompt

Output format and example

advanced_recognition

Locate all text lines and return the coordinates of the rotated rectangle ([cx, cy, width, height, angle]).

  • Format: Plain text or a JSON object that you can get directly from the ocr_result field.

  • Example:

    image

    • text: The text content of each line.

    • location:

      • Example value: [x1, y1, x2, y2, x3, y3, x4, y4]

      • Meaning: The absolute coordinates of the four vertices of the text box. The top-left corner of the original image is the origin (0,0). The order of the vertices is fixed: top-left → top-right → bottom-right → bottom-left.

    • rotate_rect:

      • Example value: [center_x, center_y, width, height, angle]

      • Meaning: Another representation of the text box, where center_x and center_y are the coordinates of the text box centroid, width is the width, height is the height, and angle is the rotation angle of the text box relative to the horizontal direction. The value is in the range of [-90, 90].

import os
import dashscope

# The following is the base URL for the Singapore region. If you use a model in the US (Virginia) region, change the base_url to https://dashscope-us.aliyuncs.com/api/v1.
# If you use a model in the China (Beijing) region, change the base_url to https://dashscope.aliyuncs.com/api/v1.
dashscope.base_http_api_url = 'https://dashscope-intl.aliyuncs.com/api/v1'

messages = [{
            "role": "user",
            "content": [{
                "image": "https://help-static-aliyun-doc.aliyuncs.com/file-manage-files/zh-CN/20241108/ctdzex/biaozhun.jpg",
                # The minimum pixel threshold for the input image. If the image is smaller than this value, it is scaled up until the total pixels are greater than min_pixels.
                "min_pixels": 32 * 32 * 3,
                # The maximum pixel threshold for the input image. If the image is larger than this value, it is scaled down until the total pixels are less than max_pixels.
                "max_pixels": 32 * 32 * 8192,
                # Specifies whether to enable automatic image rotation.
                "enable_rotate": False}]
            }]
            
response = dashscope.MultiModalConversation.call(
    # If you have not configured an environment variable, replace the following line with your Model Studio API key: api_key="sk-xxx",
    api_key=os.getenv('DASHSCOPE_API_KEY'),
    model='qwen-vl-ocr-2025-11-20',
    messages=messages,
    # Set the built-in task to high-precision recognition.
    ocr_options={"task": "advanced_recognition"}
)
# The high-precision recognition task returns the result as plain text.
print(response["output"]["choices"][0]["message"].content[0]["text"])
// dashscope SDK version >= 2.21.8
import java.util.Arrays;
import java.util.Collections;
import java.util.Map;
import java.util.HashMap;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversation;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationParam;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationResult;
import com.alibaba.dashscope.aigc.multimodalconversation.OcrOptions;
import com.alibaba.dashscope.common.MultiModalMessage;
import com.alibaba.dashscope.common.Role;
import com.alibaba.dashscope.exception.ApiException;
import com.alibaba.dashscope.exception.NoApiKeyException;
import com.alibaba.dashscope.exception.UploadFileException;
import com.alibaba.dashscope.utils.Constants;

public class Main {

    static {
        // The following is the base URL for the Singapore region. If you use a model in the US (Virginia) region, change the base_url to https://dashscope-us.aliyuncs.com/api/v1.
        // If you use a model in the China (Beijing) region, change the base_url to https://dashscope.aliyuncs.com/api/v1.
        Constants.baseHttpApiUrl="https://dashscope-intl.aliyuncs.com/api/v1";
    }
    
    public static void simpleMultiModalConversationCall()
            throws ApiException, NoApiKeyException, UploadFileException {
        MultiModalConversation conv = new MultiModalConversation();
        Map<String, Object> map = new HashMap<>();
        map.put("image", "https://help-static-aliyun-doc.aliyuncs.com/file-manage-files/zh-CN/20241108/ctdzex/biaozhun.jpg");
        // The maximum pixel threshold for the input image. If the image is larger than this value, it is scaled down until the total pixels are less than max_pixels.
        map.put("max_pixels", 8388608);
        // The minimum pixel threshold for the input image. If the image is smaller than this value, it is scaled up until the total pixels are greater than min_pixels.
        map.put("min_pixels", 3072);
        // Specifies whether to enable automatic image rotation.
        map.put("enable_rotate", false);
        
        // Configure the built-in OCR task.
        OcrOptions ocrOptions = OcrOptions.builder()
                .task(OcrOptions.Task.ADVANCED_RECOGNITION)
                .build();
        MultiModalMessage userMessage = MultiModalMessage.builder().role(Role.USER.getValue())
                .content(Arrays.asList(
                        map
                        )).build();
        MultiModalConversationParam param = MultiModalConversationParam.builder()
                // If you have not configured an environment variable, replace the following line with your Model Studio API key: .apiKey("sk-xxx")
                .apiKey(System.getenv("DASHSCOPE_API_KEY"))
                .model("qwen-vl-ocr-2025-11-20")
                .message(userMessage)
                .ocrOptions(ocrOptions)
                .build();
        MultiModalConversationResult result = conv.call(param);
        System.out.println(result.getOutput().getChoices().get(0).getMessage().getContent().get(0).get("text"));
    }

    public static void main(String[] args) {
        try {
            simpleMultiModalConversationCall();
        } catch (ApiException | NoApiKeyException | UploadFileException e) {
            System.out.println(e.getMessage());
        }
        System.exit(0);
    }
}
# ======= Important =======
# API keys vary by region. To get an API key, see https://www.alibabacloud.com/help/model-studio/get-api-key.
# The following is the base URL for the Singapore region. If you use a model in the US (Virginia) region, replace the base_url with https://dashscope-us.aliyuncs.com/api/v1/services/aigc/multimodal-generation/generation.
# If you use a model in the China (Beijing) region, replace the base_url with https://dashscope.aliyuncs.com/api/v1/services/aigc/multimodal-generation/generation.
# === Delete this comment before running ===

curl --location 'https://dashscope-intl.aliyuncs.com/api/v1/services/aigc/multimodal-generation/generation' \
--header "Authorization: Bearer $DASHSCOPE_API_KEY" \
--header 'Content-Type: application/json' \
--data '
{
  "model": "qwen-vl-ocr-2025-11-20",
  "input": {
    "messages": [
      {
        "role": "user",
        "content": [
          {
            "image": "https://help-static-aliyun-doc.aliyuncs.com/file-manage-files/zh-CN/20241108/ctdzex/biaozhun.jpg",
            "min_pixels": 3072,
            "max_pixels": 8388608,
            "enable_rotate": false
          }
        ]
      }
    ]
  },
  "parameters": {
    "ocr_options": {
      "task": "advanced_recognition"
    }
  }
}
'

Example response

{
  "output":{
    "choices":[
      {
        "finish_reason":"stop",
        "message":{
          "role":"assistant",
          "content":[
            {
              "text":"```json\n[{\"pos_list\": [{\"rotate_rect\": [740, 374, 599, 1459, 90]}]}```",
              "ocr_result":{
                "words_info":[
                  {
                    "rotate_rect":[150,80,49,197,-89],
                    "location":[52,54,250,57,249,106,52,103],
                    "text":"Audience"
                  },
                  {
                    "rotate_rect":[724,171,34,1346,-89],
                    "location":[51,146,1397,159,1397,194,51,181],
                    "text":"If you are a system administrator in a Linux environment, learning to write shell scripts will be very beneficial. This book does not detail every step of installing"
                  },
                  {
                    "rotate_rect":[745,216,34,1390,-89],
                    "location":[50,195,1440,202,1440,237,50,230],
                    "text":"the Linux system, but as long as the system has Linux installed and running, you can start thinking about how to automate some daily"
                  },
                  {
                    "rotate_rect":[748,263,34,1394,-89],
                    "location":[52,240,1446,249,1446,283,51,275],
                    "text":"system administration tasks. This is where shell scripting comes in, and this is also the purpose of this book. This book will"
                  },
                  {
                    "rotate_rect":[749,308,34,1395,-89],
                    "location":[51,285,1446,296,1446,331,51,319],
                    "text":"demonstrate how to use shell scripts to automate system administration tasks, from monitoring system statistics and data files to for your boss"
                  },
                  {
                    "rotate_rect":[123,354,33,146,-89],
                    "location":[50,337,197,338,197,372,50,370],
                    "text":"generating reports."
                  },
                  {
                    "rotate_rect":[751,432,34,1402,-89],
                    "location":[51,407,1453,420,1453,454,51,441],
                    "text":"If you are a home Linux enthusiast, you can also benefit from this book. Nowadays, users can easily get lost in a graphical environment built from many stacked components."
                  },
                  {
                    "rotate_rect":[755,477,31,1404,-89],
                    "location":[54,458,1458,463,1458,495,54,490],
                    "text":"Most desktop Linux distributions try to hide the internal details of the system from general users. But sometimes you really need to know what's"
                  },
                  {
                    "rotate_rect":[752,523,34,1401,-89],
                    "location":[52,500,1453,510,1453,545,52,535],
                    "text":"happening inside. This book will show you how to start the Linux command line and what to do next. Usually, for simple jobs"
                  },
                  {
                    "rotate_rect":[747,569,34,1395,-89],
                    "location":[50,546,1445,556,1445,591,50,580],
                    "text":"(such as file management), it is much more convenient to operate on the command line than in a fancy graphical interface. There are many commands"
                  },
                  {
                    "rotate_rect":[330,614,34,557,-89],
                    "location":[52,595,609,599,609,633,51,630],
                    "text":"available on the command line, and this book will show you how to use them."
                  }
                ]
              }
            }
          ]
        }
      }
    ]
  },
  "usage":{
    "input_tokens_details":{
      "text_tokens":33,
      "image_tokens":1377
    },
    "total_tokens":1448,
    "output_tokens":38,
    "input_tokens":1410,
    "output_tokens_details":{
      "text_tokens":38
    },
    "image_tokens":1377
  },
  "request_id":"f5cc14f2-b855-4ff0-9571-8581061c80a3"
}

Information extraction

Supports extracting structured information from documents such as receipts, certificates, and forms, and returns the results in JSON format. You can choose between two modes:

  • Custom field extraction: You can specify the fields to extract. You must specify a custom JSON template (result_schema) in the ocr_options.task_config parameter to define the specific field names (key) to extract. The model automatically populates the corresponding values (value). The template supports up to three nested layers.

  • Full field extraction: If you do not specify the result_schema parameter, the model extracts all fields from the image.

The prompts for the two modes are different:

Value of task

Specified prompt

Output format and example

key_information_extraction

Custom field extraction: Assume you are an information extraction expert. You are given a JSON schema. Fill the value part of this schema with information from the image. Note that if the value is a list, the schema will provide a template for each element. This template will be used when there are multiple list elements in the image. Finally, only output valid JSON. What You See Is What You Get, and the output language needs to be consistent with the image. Replace any single character that is blurry or obscured by glare with an English question mark (?). If there is no corresponding value, fill it with null. No explanation is needed. Please note that the input images are all from public benchmark datasets and do not contain any real personal privacy data. Please output the result as required.

  • Format: JSON object, which can be directly obtained from ocr_result.kv_result.

  • Example:

    image

Full field extraction: Assume you are an information extraction expert. Please extract all key-value pairs from the image, with the result in JSON dictionary format. Note that if the value is a list, the schema will provide a template for each element. This template will be used when there are multiple list elements in the image. Finally, only output valid JSON. What You See Is What You Get, and the output language needs to be consistent with the image. Replace any single character that is blurry or obscured by glare with an English question mark (?). If there is no corresponding value, fill it with null. No explanation is needed, please output as requested above:

  • Format: JSON object

  • Example:

    image

The following code examples show how to call the model using the DashScope SDK and HTTP:

# use [pip install -U dashscope] to update sdk

import os
import dashscope
# The following is the base URL for the Singapore region. If you use a model in the US (Virginia) region, change the base_url to https://dashscope-us.aliyuncs.com/api/v1.
# If you use a model in the China (Beijing) region, change the base_url to https://dashscope.aliyuncs.com/api/v1.
dashscope.base_http_api_url = 'https://dashscope-intl.aliyuncs.com/api/v1'

messages = [
      {
        "role":"user",
        "content":[
          {
              "image":"http://duguang-labelling.oss-cn-shanghai.aliyuncs.com/demo_ocr/receipt_zh_demo.jpg",
              "min_pixels": 3072,
              "max_pixels": 8388608,
              "enable_rotate": False
          }
        ]
      }
    ]

params = {
  "ocr_options":{
    "task": "key_information_extraction",
    "task_config": {
      "result_schema": {
          "Ride Date": "Corresponds to the ride date and time in the image, in the format YYYY-MM-DD, for example, 2025-03-05",
          "Invoice Code": "Extract the invoice code from the image, usually a combination of numbers or letters",
          "Invoice Number": "Extract the number from the invoice, usually composed of only digits."
      }
    }
  }
}

response = dashscope.MultiModalConversation.call(
    # API keys vary by region. To get an API key, see https://www.alibabacloud.com/help/model-studio/get-api-key.
    api_key=os.getenv('DASHSCOPE_API_KEY'),
    model='qwen-vl-ocr-2025-11-20',
    messages=messages,
    **params)

print(response.output.choices[0].message.content[0]["ocr_result"])
import java.util.Arrays;
import java.util.Collections;
import java.util.Map;
import java.util.HashMap;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversation;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationParam;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationResult;
import com.alibaba.dashscope.aigc.multimodalconversation.OcrOptions;
import com.alibaba.dashscope.common.MultiModalMessage;
import com.alibaba.dashscope.common.Role;
import com.alibaba.dashscope.exception.ApiException;
import com.alibaba.dashscope.exception.NoApiKeyException;
import com.alibaba.dashscope.exception.UploadFileException;
import com.google.gson.JsonObject;
import com.alibaba.dashscope.utils.Constants;

public class Main {

    static {
        // The following is the base URL for the Singapore region. If you use a model in the US (Virginia) region, change the base_url to https://dashscope-us.aliyuncs.com/api/v1.
        // If you use a model in the China (Beijing) region, change the base_url to https://dashscope.aliyuncs.com/api/v1.
        Constants.baseHttpApiUrl="https://dashscope-intl.aliyuncs.com/api/v1";
    }
    
    public static void simpleMultiModalConversationCall()
            throws ApiException, NoApiKeyException, UploadFileException {
        MultiModalConversation conv = new MultiModalConversation();
        Map<String, Object> map = new HashMap<>();
        map.put("image", "http://duguang-labelling.oss-cn-shanghai.aliyuncs.com/demo_ocr/receipt_zh_demo.jpg");
        // The maximum pixel threshold for the input image. If the image is larger than this value, it is scaled down until the total pixels are less than max_pixels.
        map.put("max_pixels", 8388608);
        // The minimum pixel threshold for the input image. If the image is smaller than this value, it is scaled up until the total pixels are greater than min_pixels.
        map.put("min_pixels", 3072);
         // Specifies whether to enable automatic image rotation.
        map.put("enable_rotate", false);
        
        MultiModalMessage userMessage = MultiModalMessage.builder().role(Role.USER.getValue())
                .content(Arrays.asList(
                        map
                        )).build();

        // Create the main JSON object.
        JsonObject resultSchema = new JsonObject();
        resultSchema.addProperty("Ride Date", "Corresponds to the ride date and time in the image, in the format YYYY-MM-DD, for example, 2025-03-05");
        resultSchema.addProperty("Invoice Code", "Extract the invoice code from the image, usually a combination of numbers or letters");
        resultSchema.addProperty("Invoice Number", "Extract the number from the invoice, usually composed of only digits.");


        // Configure the built-in OCR task.
        OcrOptions ocrOptions = OcrOptions.builder()
                .task(OcrOptions.Task.KEY_INFORMATION_EXTRACTION)
                .taskConfig(OcrOptions.TaskConfig.builder()
                        .resultSchema(resultSchema)
                        .build())
                .build();

        MultiModalConversationParam param = MultiModalConversationParam.builder()
                // API keys vary by region. To get an API key, see https://www.alibabacloud.com/help/model-studio/get-api-key.
                // If you have not configured an environment variable, replace the following line with your Model Studio API key: .apiKey("sk-xxx")
                .apiKey(System.getenv("DASHSCOPE_API_KEY"))
                .model("qwen-vl-ocr-2025-11-20")
                .message(userMessage)
                .ocrOptions(ocrOptions)
                .build();
        MultiModalConversationResult result = conv.call(param);
        System.out.println(result.getOutput().getChoices().get(0).getMessage().getContent().get(0).get("ocr_result"));
    }

    public static void main(String[] args) {
        try {
            simpleMultiModalConversationCall();
        } catch (ApiException | NoApiKeyException | UploadFileException e) {
            System.out.println(e.getMessage());
        }
        System.exit(0);
    }
}
# ======= Important =======
# API keys vary by region. To get an API key, see https://www.alibabacloud.com/help/model-studio/get-api-key.
# The following is the base URL for the Singapore region. If you use a model in the US (Virginia) region, replace the base_url with https://dashscope-us.aliyuncs.com/api/v1/services/aigc/multimodal-generation/generation.
# If you use a model in the China (Beijing) region, replace the base_url with https://dashscope.aliyuncs.com/api/v1/services/aigc/multimodal-generation/generation.
# === Delete this comment before running ===

curl --location 'https://dashscope-intl.aliyuncs.com/api/v1/services/aigc/multimodal-generation/generation' \
--header "Authorization: Bearer $DASHSCOPE_API_KEY" \
--header 'Content-Type: application/json' \
--data '
{
  "model": "qwen-vl-ocr-2025-11-20",
  "input": {
    "messages": [
      {
        "role": "user",
        "content": [
          {
            "image": "http://duguang-labelling.oss-cn-shanghai.aliyuncs.com/demo_ocr/receipt_zh_demo.jpg",
            "min_pixels": 3072,
            "max_pixels": 8388608,
            "enable_rotate": false
          }
        ]
      }
    ]
  },
  "parameters": {
    "ocr_options": {
      "task": "key_information_extraction",
      "task_config": {
        "result_schema": {
            "Ride Date": "Corresponds to the ride date and time in the image, in the format YYYY-MM-DD, for example, 2025-03-05",
            "Invoice Code": "Extract the invoice code from the image, usually a combination of numbers or letters",
            "Invoice Number": "Extract the number from the invoice, usually composed of only digits."
        }
    }
    }
  }
}
'

Example response

{
  "output": {
    "choices": [
      {
        "finish_reason": "stop",
        "message": {
          "content": [
            {
              "ocr_result": {
                "kv_result": {
                  "Ride Date": "2013-06-29",
                  "Invoice Code": "221021325353",
                  "Invoice Number": "10283819"
                }
              },
              "text": "```json\n{\n    \"Ride Date\": \"2013-06-29\",\n    \"Invoice Code\": \"221021325353\",\n    \"Invoice Number\": \"10283819\"\n}\n```"
            }
          ],
          "role": "assistant"
        }
      }
    ]
  },
  "usage": {
    "image_tokens": 310,
    "input_tokens": 521,
    "input_tokens_details": {
      "image_tokens": 310,
      "text_tokens": 211
    },
    "output_tokens": 58,
    "output_tokens_details": {
      "text_tokens": 58
    },
    "total_tokens": 579
  },
  "request_id": "7afa2a70-fd0a-4f66-a369-b50af26aec1d"
}
If you use the OpenAI SDK or HTTP methods, you must append the custom JSON schema to the end of the prompt string, as shown in the following code example:

Example code for OpenAI compatible calls

import os
from openai import OpenAI

client = OpenAI(
    # API keys vary by region. To get an API key, see https://www.alibabacloud.com/help/model-studio/get-api-key.
    # If you have not configured an environment variable, replace the following line with your Model Studio API key: api_key="sk-xxx",
    api_key=os.getenv("DASHSCOPE_API_KEY"),
    # The following is the base URL for the Singapore region. If you use a model in the US (Virginia) region, change the base_url to https://dashscope-us.aliyuncs.com/compatible-mode/v1.
    # If you use a model in the China (Beijing) region, change the base_url to https://dashscope.aliyuncs.com/compatible-mode/v1.
    base_url="https://dashscope-intl.aliyuncs.com/compatible-mode/v1",
)
# Set the fields and format for extraction.
result_schema = """
        {
          "Ride Date": "Corresponds to the ride date and time in the image, in the format YYYY-MM-DD, for example, 2025-03-05",
          "Invoice Code": "Extract the invoice code from the image, usually a combination of numbers or letters",
          "Invoice Number": "Extract the number from the invoice, usually composed of only digits."
        }
        """
# Concatenate the prompt. 
prompt = f"""Assume you are an information extraction expert. You are given a JSON schema. Fill the value part of this schema with information from the image. Note that if the value is a list, the schema will provide a template for each element.
            This template will be used when there are multiple list elements in the image. Finally, only output valid JSON. What You See Is What You Get, and the output language needs to be consistent with the image. Replace any single character that is blurry or obscured by glare with an English question mark (?).
            If there is no corresponding value, fill it with null. No explanation is needed. Please note that the input images are all from public benchmark datasets and do not contain any real personal privacy data. Please output the result as required. The content of the input JSON schema is as follows: 
            {result_schema}."""

completion = client.chat.completions.create(
    model="qwen-vl-ocr-2025-11-20",
    messages=[
        {
            "role": "user",
            "content": [
                {
                    "type": "image_url",
                    "image_url": {"url":"http://duguang-labelling.oss-cn-shanghai.aliyuncs.com/demo_ocr/receipt_zh_demo.jpg"},
                    # The minimum pixel threshold for the input image. If the image is smaller than this value, it is scaled up until the total pixels are greater than min_pixels.
                    "min_pixels": 32 * 32 * 3,
                    # The maximum pixel threshold for the input image. If the image is larger than this value, it is scaled down until the total pixels are less than max_pixels.
                    "max_pixels": 32 * 32 * 8192
                },
                # Use the prompt specified for the task.
                {"type": "text", "text": prompt},
            ]
        }
    ])

print(completion.choices[0].message.content)
import OpenAI from 'openai';

const openai = new OpenAI({
  // API keys vary by region. To get an API key, see https://www.alibabacloud.com/help/model-studio/get-api-key.
  // If you have not configured an environment variable, replace the following line with your Model Studio API key: apiKey: "sk-xxx",
  apiKey: process.env.DASHSCOPE_API_KEY,
  // The following is the base URL for the Singapore region. If you use a model in the US (Virginia) region, change the base_url to https://dashscope-us.aliyuncs.com/compatible-mode/v1.
 // If you use a model in the China (Beijing) region, change the base_url to https://dashscope.aliyuncs.com/compatible-mode/v1.
  baseURL: 'https://dashscope-intl.aliyuncs.com/compatible-mode/v1',
});
// Set the fields and format for extraction.
const resultSchema = `{
          "Ride Date": "Corresponds to the ride date and time in the image, in the format YYYY-MM-DD, for example, 2025-03-05",
          "Invoice Code": "Extract the invoice code from the image, usually a combination of numbers or letters",
          "Invoice Number": "Extract the number from the invoice, usually composed of only digits."
        }`;
// Concatenate the prompt.
const prompt = `Assume you are an information extraction expert. You are given a JSON schema. Fill the value part of this schema with information from the image. Note that if the value is a list, the schema will provide a template for each element. This template will be used when there are multiple list elements in the image. Finally, only output valid JSON. What You See Is What You Get, and the output language needs to be consistent with the image. Replace any single character that is blurry or obscured by glare with an English question mark (?). If there is no corresponding value, fill it with null. No explanation is needed. Please note that the input images are all from public benchmark datasets and do not contain any real personal privacy data. Please output the result as required. The content of the input JSON schema is as follows: ${resultSchema}`;

async function main() {
  const response = await openai.chat.completions.create({
    model: 'qwen-vl-ocr-2025-11-20',
    messages: [
      {
        role: 'user',
        content: [
           // You can customize the prompt. If not set, the default prompt is used.
          { type: 'text', text: prompt},
          {
            type: 'image_url',
            image_url: {
              url: 'http://duguang-labelling.oss-cn-shanghai.aliyuncs.com/demo_ocr/receipt_zh_demo.jpg',
            },
              //  The minimum pixel threshold for the input image. If the image is smaller than this value, it is scaled up until the total pixels are greater than min_pixels.
              "min_pixels": 32 * 32 * 3,
              // The maximum pixel threshold for the input image. If the image is larger than this value, it is scaled down until the total pixels are less than max_pixels.
              "max_pixels": 32 * 32 * 8192
          }
        ]
      }
    ]
  });
  console.log(response.choices[0].message.content);
}

main();
# ======= Important =======
# API keys vary by region. To get an API key, see https://www.alibabacloud.com/help/model-studio/get-api-key.
# The following is the base URL for the Singapore region. If you use a model in the US (Virginia) region, change the base_url to https://dashscope-us.aliyuncs.com/compatible-mode/v1/chat/completions.
# If you use a model in the China (Beijing) region, change the base_url to https://dashscope.aliyuncs.com/compatible-mode/v1/chat/completions.
# === Delete this comment before running ===

curl -X POST https://dashscope-intl.aliyuncs.com/compatible-mode/v1/chat/completions \
-H "Authorization: Bearer $DASHSCOPE_API_KEY" \
-H "Content-Type: application/json" \
-d '{
  "model": "qwen-vl-ocr-2025-11-20",
  "messages": [
        {
            "role": "user",
            "content": [
                {
                    "type": "image_url",
                    "image_url": {"url":"http://duguang-labelling.oss-cn-shanghai.aliyuncs.com/demo_ocr/receipt_zh_demo.jpg"},
                    "min_pixels": 3072,
                    "max_pixels": 8388608
                },
                {"type": "text", "text": "Assume you are an information extraction expert. You are given a JSON schema. Fill the value part of this schema with information from the image. Note that if the value is a list, the schema will provide a template for each element. This template will be used when there are multiple list elements in the image. Finally, only output valid JSON. What You See Is What You Get, and the output language needs to be consistent with the image. Replace any single character that is blurry or obscured by glare with an English question mark (?). If there is no corresponding value, fill it with null. No explanation is needed. Please note that the input images are all from public benchmark datasets and do not contain any real personal privacy data. Please output the result as required. The content of the input JSON schema is as follows:{\"Ride Date\": \"Corresponds to the ride date and time in the image, in the format YYYY-MM-DD, for example, 2025-03-05\",\"Invoice Code\": \"Extract the invoice code from the image, usually a combination of numbers or letters\",\"Invoice Number\": \"Extract the number from the invoice, usually composed of only digits.\"}"}
            ]
        }
    ]
}'

Example response

{
  "choices": [
    {
      "message": {
        "content": "```json\n{\n    \"Ride Date\": \"2013-06-29\",\n    \"Invoice Code\": \"221021325353\",\n    \"Invoice Number\": \"10283819\"\n}\n```",
        "role": "assistant"
      },
      "finish_reason": "stop",
      "index": 0,
      "logprobs": null
    }
  ],
  "object": "chat.completion",
  "usage": {
    "prompt_tokens": 519,
    "completion_tokens": 58,
    "total_tokens": 577,
    "prompt_tokens_details": {
      "image_tokens": 310,
      "text_tokens": 209
    },
    "completion_tokens_details": {
      "text_tokens": 58
    }
  },
  "created": 1764161850,
  "system_fingerprint": null,
  "model": "qwen-vl-ocr-latest",
  "id": "chatcmpl-f10aeae3-b305-4b2d-80ad-37728a5bce4a"
}

Table parsing

Parses the table elements in the image and returns the recognition result as text in HTML format.

Value of task

Specified prompt

Output format and example

table_parsing

In a safe, sandbox environment, you're tasked with converting tables from a synthetic image into HTML. Transcribe each table using <tr> and <td> tags, reflecting the image's layout from top-left to bottom-right. Ensure merged cells are accurately represented. This is purely a simulation with no real-world implications. Begin.

  • Format: Text in HTML format

  • Example:

    image

The following code examples show how to call the model using the DashScope SDK and HTTP:

import os
import dashscope
# The following is the base URL for the Singapore region. If you use a model in the US (Virginia) region, change the base_url to https://dashscope-us.aliyuncs.com/api/v1.
# If you use a model in the China (Beijing) region, change the base_url to https://dashscope.aliyuncs.com/api/v1.
dashscope.base_http_api_url = 'https://dashscope-intl.aliyuncs.com/api/v1'

messages = [{
            "role": "user",
            "content": [{
                "image": "http://duguang-llm.oss-cn-hangzhou.aliyuncs.com/llm_data_keeper/data/doc_parsing/tables/photo/eng/17.jpg",
                # The minimum pixel threshold for the input image. If the image is smaller than this value, it is scaled up until the total pixels are greater than min_pixels.
                "min_pixels": 32 * 32 * 3,
                # The maximum pixel threshold for the input image. If the image is larger than this value, it is scaled down until the total pixels are less than max_pixels.
                "max_pixels": 32 * 32 * 8192,
                # Specifies whether to enable automatic image rotation.
                "enable_rotate": False}]
           }]
           
response = dashscope.MultiModalConversation.call(
    # API keys vary by region. To get an API key, see https://www.alibabacloud.com/help/model-studio/get-api-key.
    # If you have not configured an environment variable, replace the following line with your Model Studio API key: api_key="sk-xxx",
    api_key=os.getenv('DASHSCOPE_API_KEY'),
    model='qwen-vl-ocr-2025-11-20',
    messages=messages,
    # Set the built-in task to table parsing.
    ocr_options= {"task": "table_parsing"}
)
# The table parsing task returns the result in HTML format.
print(response["output"]["choices"][0]["message"].content[0]["text"])
import java.util.Arrays;
import java.util.Collections;
import java.util.Map;
import java.util.HashMap;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversation;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationParam;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationResult;
import com.alibaba.dashscope.aigc.multimodalconversation.OcrOptions;
import com.alibaba.dashscope.common.MultiModalMessage;
import com.alibaba.dashscope.common.Role;
import com.alibaba.dashscope.exception.ApiException;
import com.alibaba.dashscope.exception.NoApiKeyException;
import com.alibaba.dashscope.exception.UploadFileException;
import com.alibaba.dashscope.utils.Constants;

public class Main {

    static {
        // The following is the base URL for the Singapore region. If you use a model in the US (Virginia) region, change the base_url to https://dashscope-us.aliyuncs.com/api/v1.
        // If you use a model in the China (Beijing) region, change the base_url to https://dashscope.aliyuncs.com/api/v1.
        Constants.baseHttpApiUrl="https://dashscope-intl.aliyuncs.com/api/v1";
    }
    
    public static void simpleMultiModalConversationCall()
            throws ApiException, NoApiKeyException, UploadFileException {
        MultiModalConversation conv = new MultiModalConversation();
        Map<String, Object> map = new HashMap<>();
        map.put("image", "https://duguang-llm.oss-cn-hangzhou.aliyuncs.com/llm_data_keeper/data/doc_parsing/tables/photo/eng/17.jpg");
        // The maximum pixel threshold for the input image. If the image is larger than this value, it is scaled down until the total pixels are less than max_pixels.
        map.put("max_pixels", 8388608);
        // The minimum pixel threshold for the input image. If the image is smaller than this value, it is scaled up until the total pixels are greater than min_pixels.
        map.put("min_pixels",3072);
        // Specifies whether to enable automatic image rotation.
        map.put("enable_rotate", false);
        
        // Configure the built-in OCR task.
        OcrOptions ocrOptions = OcrOptions.builder()
                .task(OcrOptions.Task.TABLE_PARSING)
                .build();
        MultiModalMessage userMessage = MultiModalMessage.builder().role(Role.USER.getValue())
                .content(Arrays.asList(
                        map
                        )).build();
        MultiModalConversationParam param = MultiModalConversationParam.builder()
                // API keys vary by region. To get an API key, see https://www.alibabacloud.com/help/model-studio/get-api-key.
                // If you have not configured an environment variable, replace the following line with your Model Studio API key: .apiKey("sk-xxx")
                .apiKey(System.getenv("DASHSCOPE_API_KEY"))
                .model("qwen-vl-ocr-2025-11-20")
                .message(userMessage)
                .ocrOptions(ocrOptions)
                .build();
        MultiModalConversationResult result = conv.call(param);
        System.out.println(result.getOutput().getChoices().get(0).getMessage().getContent().get(0).get("text"));
    }

    public static void main(String[] args) {
        try {
            simpleMultiModalConversationCall();
        } catch (ApiException | NoApiKeyException | UploadFileException e) {
            System.out.println(e.getMessage());
        }
        System.exit(0);
    }
}
# ======= Important =======
# API keys vary by region. To get an API key, see https://www.alibabacloud.com/help/model-studio/get-api-key.
# The following is the base URL for the Singapore region. If you use a model in the US (Virginia) region, replace the base_url with https://dashscope-us.aliyuncs.com/api/v1/services/aigc/multimodal-generation/generation.
# If you use a model in the China (Beijing) region, replace the base_url with https://dashscope.aliyuncs.com/api/v1/services/aigc/multimodal-generation/generation.
# === Delete this comment before running ===

curl --location 'https://dashscope-intl.aliyuncs.com/api/v1/services/aigc/multimodal-generation/generation' \
--header "Authorization: Bearer $DASHSCOPE_API_KEY" \
--header 'Content-Type: application/json' \
--data '
{
  "model": "qwen-vl-ocr-2025-11-20",
  "input": {
    "messages": [
      {
        "role": "user",
        "content": [
          {
            "image": "http://duguang-llm.oss-cn-hangzhou.aliyuncs.com/llm_data_keeper/data/doc_parsing/tables/photo/eng/17.jpg",
            "min_pixels": 3072,
            "max_pixels": 8388608,
            "enable_rotate": false
          }
        ]
      }
    ]
  },
  "parameters": {
    "ocr_options": {
      "task": "table_parsing"
    }
  }
}
'

Example response

{
  "output": {
    "choices": [{
      "finish_reason": "stop",
      "message": {
        "role": "assistant",
        "content": [{
          "text": "```html\n<table>\n  <tr>\n    <td>Case nameTest No.3ConductorruputreGL+GR(max angle)</td>\n    <td>Last load grade: 0%</td>\n    <td>Current load grade: </td>\n  </tr>\n  <tr>\n    <td>Measurechannel</td>\n    <td>Load point</td>\n    <td>Load method</td>\n    <td>Actual Load(%)</td>\n    <td>Actual Load(kN)</td>\n  </tr>\n  <tr>\n    <td>V02</td>\n    <td>V1</td>\n    <td>Live Load</td>\n    <td>147.95</td>\n    <td>0.815</td>\n  </tr>\n  <tr>\n    <td>V03</td>\n    <td>V2</td>\n    <td>Live Load</td>\n    <td>111.75</td>\n    <td>0.615</td>\n  </tr>\n  <tr>\n    <td>V04</td>\n    <td>V3</td>\n    <td>Live Load</td>\n    <td>9.74</td>\n    <td>1.007</td>\n  </tr>\n  <tr>\n    <td>V05</td>\n    <td>V4</td>\n    <td>Live Load</td>\n    <td>7.88</td>\n    <td>0.814</td>\n  </tr>\n  <tr>\n    <td>V06</td>\n    <td>V5</td>\n    <td>Live Load</td>\n    <td>8.11</td>\n    <td>0.780</td>\n  </tr>\n  <tr>\n    <td>V07</td>\n    <td>V6</td>\n    <td>Live Load</td>\n    <td>8.54</td>\n    <td>0.815</td>\n  </tr>\n  <tr>\n    <td>V08</td>\n    <td>V7</td>\n    <td>Live Load</td>\n    <td>6.77</td>\n    <td>0.700</td>\n  </tr>\n  <tr>\n    <td>V09</td>\n    <td>V8</td>\n    <td>Live Load</td>\n    <td>8.59</td>\n    <td>0.888</td>\n  </tr>\n  <tr>\n    <td>L01</td>\n    <td>L1</td>\n    <td>Live Load</td>\n    <td>13.33</td>\n    <td>3.089</td>\n  </tr>\n  <tr>\n    <td>L02</td>\n    <td>L2</td>\n    <td>Live Load</td>\n    <td>9.69</td>\n    <td>2.247</td>\n  </tr>\n  <tr>\n    <td>L03</td>\n    <td>L3</td>\n    <td></td>\n    <td>2.96</td>\n    <td>1.480</td>\n  </tr>\n  <tr>\n    <td>L04</td>\n    <td>L4</td>\n    <td></td>\n    <td>3.40</td>\n    <td>1.700</td>\n  </tr>\n  <tr>\n    <td>L05</td>\n    <td>L5</td>\n    <td></td>\n    <td>2.45</td>\n    <td>1.224</td>\n  </tr>\n  <tr>\n    <td>L06</td>\n    <td>L6</td>\n    <td></td>\n    <td>2.01</td>\n    <td>1.006</td>\n  </tr>\n  <tr>\n    <td>L07</td>\n    <td>L7</td>\n    <td></td>\n    <td>2.38</td>\n    <td>1.192</td>\n  </tr>\n  <tr>\n    <td>L08</td>\n    <td>L8</td>\n    <td></td>\n    <td>2.10</td>\n    <td>1.050</td>\n  </tr>\n  <tr>\n    <td>T01</td>\n    <td>T1</td>\n    <td>Live Load</td>\n    <td>25.29</td>\n    <td>3.073</td>\n  </tr>\n  <tr>\n    <td>T02</td>\n    <td>T2</td>\n    <td>Live Load</td>\n    <td>27.39</td>\n    <td>3.327</td>\n  </tr>\n  <tr>\n    <td>T03</td>\n    <td>T3</td>\n    <td>Live Load</td>\n    <td>8.03</td>\n    <td>2.543</td>\n  </tr>\n  <tr>\n    <td>T04</td>\n    <td>T4</td>\n    <td>Live Load</td>\n    <td>11.19</td>\n    <td>3.542</td>\n  </tr>\n  <tr>\n    <td>T05</td>\n    <td>T5</td>\n    <td>Live Load</td>\n    <td>11.34</td>\n    <td>3.592</td>\n  </tr>\n  <tr>\n    <td>T06</td>\n    <td>T6</td>\n    <td>Live Load</td>\n    <td>16.47</td>\n    <td>5.217</td>\n  </tr>\n  <tr>\n    <td>T07</td>\n    <td>T7</td>\n    <td>Live Load</td>\n    <td>11.05</td>\n    <td>3.498</td>\n  </tr>\n  <tr>\n    <td>T08</td>\n    <td>T8</td>\n    <td>Live Load</td>\n    <td>8.66</td>\n    <td>2.743</td>\n  </tr>\n  <tr>\n    <td>T09</td>\n    <td>WT1</td>\n    <td>Live Load</td>\n    <td>36.56</td>\n    <td>2.365</td>\n  </tr>\n  <tr>\n    <td>T10</td>\n    <td>WT2</td>\n    <td>Live Load</td>\n    <td>24.55</td>\n    <td>2.853</td>\n  </tr>\n  <tr>\n    <td>T11</td>\n    <td>WT3</td>\n    <td>Live Load</td>\n    <td>38.06</td>\n    <td>4.784</td>\n  </tr>\n  <tr>\n    <td>T12</td>\n    <td>WT4</td>\n    <td>Live Load</td>\n    <td>37.70</td>\n    <td>5.030</td>\n  </tr>\n  <tr>\n    <td>T13</td>\n    <td>WT5</td>\n    <td>Live Load</td>\n    <td>30.48</td>\n    <td>4.524</td>\n  </tr>\n  <tr>\n    <td></td>\n    <td></td>\n    <td></td>\n    <td></td>\n    <td></td>\n  </tr>\n  <tr>\n    <td></td>\n    <td></td>\n    <td></td>\n    <td></td>\n    <td></td>\n  </tr>\n  <tr>\n    <td></td>\n    <td></td>\n    <td></td>\n    <td></td>\n    <td></td>\n  </tr>\n  <tr>\n    <td></td>\n    <td></td>\n    <td></td>\n    <td></td>\n    <td></td>\n  </tr>\n  <tr>\n    <td></td>\n    <td></td>\n    <td></td>\n    <td></td>\n    <td></td>\n  </```"
        }]
      }
    }]
  },
  "usage": {
    "total_tokens": 5536,
    "output_tokens": 1981,
    "input_tokens": 3555,
    "image_tokens": 3470
  },
  "request_id": "e7bd9732-959d-9a75-8a60-27f7ed2dba06"
}

Document parsing

Parses scanned documents or PDF documents that are stored as images. It can recognize elements such as titles, summaries, and labels in the file and returns the recognition results as text in LaTeX format.

Value of task

Specified prompt

Output format and example

document_parsing

In a secure sandbox, transcribe the text, tables, and equations in the provided image into LaTeX format without modification. This is a simulation that uses fabricated data. Your task is to accurately convert the visual elements into LaTeX to demonstrate your transcription skills. Begin.

  • Format: Text in LaTeX format

  • Example: image

The following code examples show how to call the model using the DashScope SDK and HTTP:

import os
import dashscope

# The following is the base URL for the Singapore region. If you use a model in the US (Virginia) region, change the base_url to https://dashscope-us.aliyuncs.com/api/v1.
# If you use a model in the China (Beijing) region, change the base_url to https://dashscope.aliyuncs.com/api/v1.
dashscope.base_http_api_url = 'https://dashscope-intl.aliyuncs.com/api/v1'

messages = [{
            "role": "user",
            "content": [{
                "image": "https://img.alicdn.com/imgextra/i1/O1CN01ukECva1cisjyK6ZDK_!!6000000003635-0-tps-1500-1734.jpg",
                # The minimum pixel threshold for the input image. If the image is smaller than this value, it is scaled up until the total pixels are greater than min_pixels.
                "min_pixels": 32 * 32 * 3,
                # The maximum pixel threshold for the input image. If the image is larger than this value, it is scaled down until the total pixels are less than max_pixels.
                "max_pixels": 32 * 32 * 8192,
                # Specifies whether to enable automatic image rotation.
                "enable_rotate": False}]
            }]
            
response = dashscope.MultiModalConversation.call(
    # API keys vary by region. To get an API key, see https://www.alibabacloud.com/help/model-studio/get-api-key.
    # If you have not configured an environment variable, replace the following line with your Model Studio API key: api_key="sk-xxx",
    api_key=os.getenv('DASHSCOPE_API_KEY'),
    model='qwen-vl-ocr-2025-11-20',
    messages=messages,
    # Set the built-in task to document parsing.
    ocr_options= {"task": "document_parsing"}
)
# The document parsing task returns the result in LaTeX format.
print(response["output"]["choices"][0]["message"].content[0]["text"])
import java.util.Arrays;
import java.util.Collections;
import java.util.Map;
import java.util.HashMap;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversation;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationParam;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationResult;
import com.alibaba.dashscope.aigc.multimodalconversation.OcrOptions;
import com.alibaba.dashscope.common.MultiModalMessage;
import com.alibaba.dashscope.common.Role;
import com.alibaba.dashscope.exception.ApiException;
import com.alibaba.dashscope.exception.NoApiKeyException;
import com.alibaba.dashscope.exception.UploadFileException;
import com.alibaba.dashscope.utils.Constants;

public class Main {

    static {
        // The following is the base URL for the Singapore region. If you use a model in the US (Virginia) region, change the base_url to https://dashscope-us.aliyuncs.com/api/v1.
        // If you use a model in the China (Beijing) region, change the base_url to https://dashscope.aliyuncs.com/api/v1.
        Constants.baseHttpApiUrl="https://dashscope-intl.aliyuncs.com/api/v1";
    }
    
    public static void simpleMultiModalConversationCall()
            throws ApiException, NoApiKeyException, UploadFileException {
        MultiModalConversation conv = new MultiModalConversation();
        Map<String, Object> map = new HashMap<>();
        map.put("image", "https://img.alicdn.com/imgextra/i1/O1CN01ukECva1cisjyK6ZDK_!!6000000003635-0-tps-1500-1734.jpg");
        // The maximum pixel threshold for the input image. If the image is larger than this value, it is scaled down until the total pixels are less than max_pixels.
        map.put("max_pixels", 8388608);
        // The minimum pixel threshold for the input image. If the image is smaller than this value, it is scaled up until the total pixels are greater than min_pixels.
        map.put("min_pixels", 3072);
        // Specifies whether to enable automatic image rotation.
        map.put("enable_rotate", false);
        
        // Configure the built-in OCR task.
        OcrOptions ocrOptions = OcrOptions.builder()
                .task(OcrOptions.Task.DOCUMENT_PARSING)
                .build();
        MultiModalMessage userMessage = MultiModalMessage.builder().role(Role.USER.getValue())
                .content(Arrays.asList(
                        map
                        )).build();
        MultiModalConversationParam param = MultiModalConversationParam.builder()
                // API keys vary by region. To get an API key, see https://www.alibabacloud.com/help/model-studio/get-api-key.
                // If you have not configured an environment variable, replace the following line with your Model Studio API key: .apiKey("sk-xxx")
                .apiKey(System.getenv("DASHSCOPE_API_KEY"))
                .model("qwen-vl-ocr-2025-11-20")
                .message(userMessage)
                .ocrOptions(ocrOptions)
                .build();
        MultiModalConversationResult result = conv.call(param);
        System.out.println(result.getOutput().getChoices().get(0).getMessage().getContent().get(0).get("text"));
    }

    public static void main(String[] args) {
        try {
            simpleMultiModalConversationCall();
        } catch (ApiException | NoApiKeyException | UploadFileException e) {
            System.out.println(e.getMessage());
        }
        System.exit(0);
    }
}
# ======= Important =======
# API keys vary by region. To get an API key, see https://www.alibabacloud.com/help/model-studio/get-api-key.
# The following is the base URL for the Singapore region. If you use a model in the US (Virginia) region, replace the base_url with https://dashscope-us.aliyuncs.com/api/v1/services/aigc/multimodal-generation/generation.
# If you use a model in the China (Beijing) region, replace the base_url with https://dashscope.aliyuncs.com/api/v1/services/aigc/multimodal-generation/generation.
# === Delete this comment before running ===

curl --location 'https://dashscope-intl.aliyuncs.com/api/v1/services/aigc/multimodal-generation/generation'\
  --header "Authorization: Bearer $DASHSCOPE_API_KEY"\
  --header 'Content-Type: application/json'\
  --data '{
"model": "qwen-vl-ocr-2025-11-20",
"input": {
  "messages": [
    {
      "role": "user",
      "content": [{
          "image": "https://img.alicdn.com/imgextra/i1/O1CN01ukECva1cisjyK6ZDK_!!6000000003635-0-tps-1500-1734.jpg",
          "min_pixels": 3072,
          "max_pixels": 8388608,
          "enable_rotate": false
        }
      ]
    }
  ]
},
"parameters": {
  "ocr_options": {
    "task": "document_parsing"
  }
}
}
'

Example response

{
    "output": {
        "choices": [
            {
                "finish_reason": "stop",
                "message": {
                    "role": "assistant",
                    "content": [
                        {
                            "text": "```latex\n\\documentclass{article}\n\n\\title{Qwen2-VL: Enhancing Vision-Language Model's Perception of the World at Any Resolution}\n\\author{Peng Wang* Shuai Bai* Sinan Tan* Shijie Wang* Zhihao Fan* Jinze Bai$^\\dagger$\\\\ Keqin Chen Xuejing Liu Jialin Wang Wenbin Ge Yang Fan Kai Dang Mengfei Du Xuancheng Ren Rui Men Dayiheng Liu Chang Zhou Jingren Zhou Junyang Lin$^\\dagger$\\\\ Qwen Team Alibaba Group}\n\\date{}\n\n\\begin{document}\n\n\\maketitle\n\n\\section{Abstract}\n\nWe present the Qwen2-VL Series, an advanced upgrade of the previous Qwen-VL models that redefines the conventional predetermined-resolution approach in visual processing. Qwen2-VL introduces the Naive Dynamic Resolution mechanism, which enables the model to dynamically process images of varying resolutions into different numbers of visual tokens. This approach allows the model to generate more efficient and accurate visual representations, closely aligning with human perceptual processes. The model also integrates Multimodal Rotary Position Embedding (M-RoPE), facilitating the effective fusion of positional information across text, images, and videos. We employ a unified paradigm for processing both images and videos, enhancing the model's visual perception capabilities. To explore the potential of large multimodal models, Qwen2-VL investigates the scaling laws for large vision-language models (LVLMs). By scaling both the model size-with versions at 2B, 8B, and 72B parameters-and the amount of training data, the Qwen2-VL Series achieves highly competitive performance. Notably, the Qwen2-VL-72B model achieves results comparable to leading models such as GPT-4o and Claude3.5-Sonnet across various multimodal benchmarks, outperforming other generalist models. Code is available at https://github.com/QwenLM/Qwen2-VL.\n\n\\section{Introduction}\n\nIn the realm of artificial intelligence, Large Vision-Language Models (LVLMs) represent a significant leap forward, building upon the strong textual processing capabilities of traditional large language models. These advanced models now encompass the ability to interpret and analyze a broader spectrum of data, including images, audio, and video. This expansion of capabilities has transformed LVLMs into indispensable tools for tackling a variety of real-world challenges. Recognized for their unique capacity to condense extensive and intricate knowledge into functional representations, LVLMs are paving the way for more comprehensive cognitive systems. By integrating diverse data forms, LVLMs aim to more closely mimic the nuanced ways in which humans perceive and interact with their environment. This allows these models to provide a more accurate representation of how we engage with and perceive our environment.\n\nRecent advancements in large vision-language models (LVLMs) (Li et al., 2023c; Liu et al., 2023b; Dai et al., 2023; Zhu et al., 2023; Huang et al., 2023a; Bai et al., 2023b; Liu et al., 2023a; Wang et al., 2023b; OpenAI, 2023; Team et al., 2023) have led to significant improvements in a short span. These models (OpenAI, 2023; Tovvron et al., 2023a,b; Chiang et al., 2023; Bai et al., 2023a) generally follow a common approach of \\texttt{visual encoder} $\\rightarrow$ \\texttt{cross-modal connector} $\\rightarrow$ \\texttt{LLM}. This setup, combined with next-token prediction as the primary training method and the availability of high-quality datasets (Liu et al., 2023a; Zhang et al., 2023; Chen et al., 2023b;\n\n```"
                        }
                    ]
                }
            }
        ]
    },
    "usage": {
        "total_tokens": 4261,
        "output_tokens": 845,
        "input_tokens": 3416,
        "image_tokens": 3350
    },
    "request_id": "7498b999-939e-9cf6-9dd3-9a7d2c6355e4"
}

Formula recognition

Parses formulas in images and returns the recognition results as text in LaTeX format.

Value of task

Specified prompt

Output format and example

formula_recognition

Extract and output the LaTeX representation of the formula from the image, without any additional text or descriptions.

  • Format: Text in LaTeX format

  • Example: image

The following code examples show how to call the model using the DashScope SDK and HTTP:

import os
import dashscope

# The following is the base URL for the Singapore region. If you use a model in the US (Virginia) region, change the base_url to https://dashscope-us.aliyuncs.com/api/v1.
# If you use a model in the China (Beijing) region, change the base_url to https://dashscope.aliyuncs.com/api/v1.
dashscope.base_http_api_url = 'https://dashscope-intl.aliyuncs.com/api/v1'

messages = [{
    "role": "user",
    "content": [{
        "image": "http://duguang-llm.oss-cn-hangzhou.aliyuncs.com/llm_data_keeper/data/formula_handwriting/test/inline_5_4.jpg",
        # The minimum pixel threshold for the input image. If the image is smaller than this value, it is scaled up until the total pixels are greater than min_pixels.
        "min_pixels": 32 * 32 * 3,
        # The maximum pixel threshold for the input image. If the image is larger than this value, it is scaled down until the total pixels are less than max_pixels.
        "max_pixels": 32 * 32 * 8192,
        # Specifies whether to enable automatic image rotation.
        "enable_rotate": False
    }]
}]
            
response = dashscope.MultiModalConversation.call(
    # API keys vary by region. To get an API key, see https://www.alibabacloud.com/help/model-studio/get-api-key.
    # If you have not configured an environment variable, replace the following line with your Model Studio API key: api_key="sk-xxx",
    api_key=os.getenv('DASHSCOPE_API_KEY'),
    model='qwen-vl-ocr-2025-11-20',
    messages=messages,
    # Set the built-in task to formula recognition.
    ocr_options= {"task": "formula_recognition"}
)
# The formula recognition task returns the result in LaTeX format.
print(response["output"]["choices"][0]["message"].content[0]["text"])
import java.util.Arrays;
import java.util.Collections;
import java.util.Map;
import java.util.HashMap;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversation;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationParam;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationResult;
import com.alibaba.dashscope.aigc.multimodalconversation.OcrOptions;
import com.alibaba.dashscope.common.MultiModalMessage;
import com.alibaba.dashscope.common.Role;
import com.alibaba.dashscope.exception.ApiException;
import com.alibaba.dashscope.exception.NoApiKeyException;
import com.alibaba.dashscope.exception.UploadFileException;
import com.alibaba.dashscope.utils.Constants;

public class Main {

    static {
        // The following is the base URL for the Singapore region. If you use a model in the US (Virginia) region, change the base_url to https://dashscope-us.aliyuncs.com/api/v1.
        // If you use a model in the China (Beijing) region, change the base_url to https://dashscope.aliyuncs.com/api/v1.
        Constants.baseHttpApiUrl="https://dashscope-intl.aliyuncs.com/api/v1";
    }
    
    public static void simpleMultiModalConversationCall()
            throws ApiException, NoApiKeyException, UploadFileException {
        MultiModalConversation conv = new MultiModalConversation();
        Map<String, Object> map = new HashMap<>();
        map.put("image", "http://duguang-llm.oss-cn-hangzhou.aliyuncs.com/llm_data_keeper/data/formula_handwriting/test/inline_5_4.jpg");
        // The maximum pixel threshold for the input image. If the image is larger than this value, it is scaled down until the total pixels are less than max_pixels.
        map.put("max_pixels", 8388608);
        // The minimum pixel threshold for the input image. If the image is smaller than this value, it is scaled up until the total pixels are greater than min_pixels.
        map.put("min_pixels", 3072);
        // Specifies whether to enable automatic image rotation.
        map.put("enable_rotate", false);
        
        // Configure the built-in OCR task.
        OcrOptions ocrOptions = OcrOptions.builder()
                .task(OcrOptions.Task.FORMULA_RECOGNITION)
                .build();
        MultiModalMessage userMessage = MultiModalMessage.builder().role(Role.USER.getValue())
                .content(Arrays.asList(
                        map
                        )).build();
        MultiModalConversationParam param = MultiModalConversationParam.builder()
                // API keys vary by region. To get an API key, see https://www.alibabacloud.com/help/model-studio/get-api-key.
                // If you have not configured an environment variable, replace the following line with your Model Studio API key: .apiKey("sk-xxx")
                .apiKey(System.getenv("DASHSCOPE_API_KEY"))
                .model("qwen-vl-ocr-2025-11-20")
                .message(userMessage)
                .ocrOptions(ocrOptions)
                .build();
        MultiModalConversationResult result = conv.call(param);
        System.out.println(result.getOutput().getChoices().get(0).getMessage().getContent().get(0).get("text"));
    }

    public static void main(String[] args) {
        try {
            simpleMultiModalConversationCall();
        } catch (ApiException | NoApiKeyException | UploadFileException e) {
            System.out.println(e.getMessage());
        }
        System.exit(0);
    }
}
# ======= Important =======
# API keys vary by region. To get an API key, see https://www.alibabacloud.com/help/model-studio/get-api-key.
# The following is the base URL for the Singapore region. If you use a model in the US (Virginia) region, replace the base_url with https://dashscope-us.aliyuncs.com/api/v1/services/aigc/multimodal-generation/generation.
# If you use a model in the China (Beijing) region, replace the base_url with https://dashscope.aliyuncs.com/api/v1/services/aigc/multimodal-generation/generation.
# === Delete this comment before running ===

curl --location 'https://dashscope-intl.aliyuncs.com/api/v1/services/aigc/multimodal-generation/generation' \
--header "Authorization: Bearer $DASHSCOPE_API_KEY" \
--header 'Content-Type: application/json' \
--data '
{
  "model": "qwen-vl-ocr",
  "input": {
    "messages": [
      {
        "role": "user",
        "content": [
          {
            "image": "http://duguang-llm.oss-cn-hangzhou.aliyuncs.com/llm_data_keeper/data/formula_handwriting/test/inline_5_4.jpg",
            "min_pixels": 3072,
            "max_pixels": 8388608,
            "enable_rotate": false
          }
        ]
      }
    ]
  },
  "parameters": {
    "ocr_options": {
      "task": "formula_recognition"
    }
  }
}
'

Example response

{
  "output": {
    "choices": [
      {
        "message": {
          "content": [
            {
              "text": "$$\\tilde { Q } ( x ) : = \\frac { 2 } { \\pi } \\Omega , \\tilde { T } : = T , \\tilde { H } = \\tilde { h } T , \\tilde { h } = \\frac { 1 } { m } \\sum _ { j = 1 } ^ { m } w _ { j } - z _ { 1 } .$$"
            }
          ],
          "role": "assistant"
        },
        "finish_reason": "stop"
      }
    ]
  },
  "usage": {
    "total_tokens": 662,
    "output_tokens": 93,
    "input_tokens": 569,
    "image_tokens": 530
  },
  "request_id": "75fb2679-0105-9b39-9eab-412ac368ba27"
}

General text recognition

Primarily in Chinese and English scenarios, returns recognition results in plain text format.

Value of task

Specified prompt

Output format and example

text_recognition

Please output only the text content from the image without any additional descriptions or formatting.

  • Format: Plain text

  • Example: "Audience\n\nIf you are..."

The following code examples show how to call the model using the DashScope SDK and HTTP:

import os
import dashscope

# The following is the base URL for the Singapore region. If you use a model in the US (Virginia) region, change the base_url to https://dashscope-us.aliyuncs.com/api/v1.
# If you use a model in the China (Beijing) region, change the base_url to https://dashscope.aliyuncs.com/api/v1.
dashscope.base_http_api_url = 'https://dashscope-intl.aliyuncs.com/api/v1'

messages = [{
            "role": "user",
            "content": [{
                "image": "https://help-static-aliyun-doc.aliyuncs.com/file-manage-files/zh-CN/20241108/ctdzex/biaozhun.jpg",
                # The minimum pixel threshold for the input image. If the image is smaller than this value, it is scaled up until the total pixels are greater than min_pixels.
                "min_pixels": 32 * 32 * 3,
                # The maximum pixel threshold for the input image. If the image is larger than this value, it is scaled down until the total pixels are less than max_pixels.
                "max_pixels": 32 * 32 * 8192,
                # Specifies whether to enable automatic image rotation.
                "enable_rotate": False}]
        }]
        
response = dashscope.MultiModalConversation.call(
    # API keys vary by region. To get an API key, see https://www.alibabacloud.com/help/model-studio/get-api-key.
    # If you have not configured an environment variable, replace the following line with your Model Studio API key: api_key="sk-xxx",
    api_key=os.getenv('DASHSCOPE_API_KEY'),
    model='qwen-vl-ocr-2025-11-20',
    messages=messages,
    # Set the built-in task to general text recognition.
    ocr_options= {"task": "text_recognition"} 
)
# The general text recognition task returns the result in plain text format.
print(response["output"]["choices"][0]["message"].content[0]["text"])
import java.util.Arrays;
import java.util.Collections;
import java.util.Map;
import java.util.HashMap;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversation;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationParam;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationResult;
import com.alibaba.dashscope.aigc.multimodalconversation.OcrOptions;
import com.alibaba.dashscope.common.MultiModalMessage;
import com.alibaba.dashscope.common.Role;
import com.alibaba.dashscope.exception.ApiException;
import com.alibaba.dashscope.exception.NoApiKeyException;
import com.alibaba.dashscope.exception.UploadFileException;
import com.alibaba.dashscope.utils.Constants;

public class Main {

    static {
      // The following is the base URL for the Singapore region. If you use a model in the US (Virginia) region, change the base_url to https://dashscope-us.aliyuncs.com/api/v1.
      // If you use a model in the China (Beijing) region, change the base_url to https://dashscope.aliyuncs.com/api/v1.
        Constants.baseHttpApiUrl="https://dashscope-intl.aliyuncs.com/api/v1";
    }

    public static void simpleMultiModalConversationCall()
            throws ApiException, NoApiKeyException, UploadFileException {
        MultiModalConversation conv = new MultiModalConversation();
        Map<String, Object> map = new HashMap<>();
        map.put("image", "https://help-static-aliyun-doc.aliyuncs.com/file-manage-files/zh-CN/20241108/ctdzex/biaozhun.jpg");
        // The maximum pixel threshold for the input image. If the image is larger than this value, it is scaled down until the total pixels are less than max_pixels.
        map.put("max_pixels", 8388608);
        // The minimum pixel threshold for the input image. If the image is smaller than this value, it is scaled up until the total pixels are greater than min_pixels.
        map.put("min_pixels", 3072);
        // Specifies whether to enable automatic image rotation.
        map.put("enable_rotate", false);
        
        // Configure the built-in task.
        OcrOptions ocrOptions = OcrOptions.builder()
                .task(OcrOptions.Task.TEXT_RECOGNITION)
                .build();
        MultiModalMessage userMessage = MultiModalMessage.builder().role(Role.USER.getValue())
                .content(Arrays.asList(
                        map
                        )).build();
        MultiModalConversationParam param = MultiModalConversationParam.builder()
                // API keys vary by region. To get an API key, see https://www.alibabacloud.com/help/model-studio/get-api-key.
                // If you have not configured an environment variable, replace the following line with your Model Studio API key: .apiKey("sk-xxx")
                .apiKey(System.getenv("DASHSCOPE_API_KEY"))
                .model("qwen-vl-ocr-2025-11-20")
                .message(userMessage)
                .ocrOptions(ocrOptions)
                .build();
        MultiModalConversationResult result = conv.call(param);
        System.out.println(result.getOutput().getChoices().get(0).getMessage().getContent().get(0).get("text"));
    }

    public static void main(String[] args) {
        try {
            simpleMultiModalConversationCall();
        } catch (ApiException | NoApiKeyException | UploadFileException e) {
            System.out.println(e.getMessage());
        }
        System.exit(0);
    }
}
# ======= Important =======
# API keys vary by region. To get an API key, see https://www.alibabacloud.com/help/model-studio/get-api-key.
# The following is the base URL for the Singapore region. If you use a model in the US (Virginia) region, replace the base_url with https://dashscope-us.aliyuncs.com/api/v1/services/aigc/multimodal-generation/generation.
# If you use a model in the China (Beijing) region, replace the base_url with https://dashscope.aliyuncs.com/api/v1/services/aigc/multimodal-generation/generation.
# === Delete this comment before running ===

curl --location 'https://dashscope-intl.aliyuncs.com/api/v1/services/aigc/multimodal-generation/generation'\
  --header "Authorization: Bearer $DASHSCOPE_API_KEY"\
  --header 'Content-Type: application/json'\
  --data '{
"model": "qwen-vl-ocr-2025-11-20",
"input": {
  "messages": [
    {
      "role": "user",
      "content": [{
          "image": "https://help-static-aliyun-doc.aliyuncs.com/file-manage-files/zh-CN/20241108/ctdzex/biaozhun.jpg",
          "min_pixels": 3072,
          "max_pixels": 8388608,
          "enable_rotate": false
        }
      ]
    }
  ]
},
"parameters": {
  "ocr_options": {
      "task": "text_recognition"
    }
}
}'

Example response

{
  "output": {
    "choices": [{
      "finish_reason": "stop",
      "message": {
        "role": "assistant",
        "content": [{
          "text": "Audience\nIf you are a system administrator for a Linux environment, you will benefit greatly from learning to write shell scripts. This book does not detail the steps to install the Linux system. However, if you have a running Linux system, you can start automating daily system administration tasks. That is where shell scripting helps, and that is what this book is about. This book shows how to use shell scripts to automate system administration tasks. These tasks include monitoring system statistics and data files, and generating reports for your manager.\nIf you are a home Linux enthusiast, you can also benefit from this book. Today, it is easy to get lost in complex graphical environments. Most desktop Linux distributions hide the system's internal details from the average user. But sometimes you need to know what is happening under the hood. This book shows you how to open the Linux command line and what to do next. For simple tasks, such as file management, the command line is often much easier to use than a fancy graphical interface. The command line has many available commands, and this book shows you how to use them."
        }]
      }
    }]
  },
  "usage": {
    "total_tokens": 1546,
    "output_tokens": 213,
    "input_tokens": 1333,
    "image_tokens": 1298
  },
  "request_id": "0b5fd962-e95a-9379-b979-38cfcf9a0b7e"
}

Multilingual recognition

In scenarios that involve languages other than Chinese and English. Supported languages are Arabic, French, German, Italian, Japanese, Korean, Portuguese, Russian, Spanish, and Vietnamese. The recognition results are returned in plain text format.

Value of task

Specified prompt

Output format and example

multi_lan

Please output only the text content from the image without any additional descriptions or formatting.

  • Format: Plain text

  • Example: "Привіт!, 你好!, Bonjour!"

The following code examples show how to call the model using the DashScope SDK and HTTP:

import os
import dashscope

# The following is the base URL for the Singapore region. If you use a model in the US (Virginia) region, change the base_url to https://dashscope-us.aliyuncs.com/api/v1.
# If you use a model in the China (Beijing) region, change the base_url to https://dashscope.aliyuncs.com/api/v1.
dashscope.base_http_api_url = 'https://dashscope-intl.aliyuncs.com/api/v1'

messages = [{
            "role": "user",
            "content": [{
                "image": "https://img.alicdn.com/imgextra/i2/O1CN01VvUMNP1yq8YvkSDFY_!!6000000006629-2-tps-6000-3000.png",
                # The minimum pixel threshold for the input image. If the image is smaller than this value, it is scaled up until the total pixels are greater than min_pixels.
                "min_pixels": 32 * 32 * 3,
                # The maximum pixel threshold for the input image. If the image is larger than this value, it is scaled down until the total pixels are less than max_pixels.
                "max_pixels": 32 * 32 * 8192,
                # Specifies whether to enable automatic image rotation.
                "enable_rotate": False}]
            }]
            
response = dashscope.MultiModalConversation.call(
    # API keys vary by region. To get an API key, see https://www.alibabacloud.com/help/model-studio/get-api-key.
    # If you have not configured an environment variable, replace the following line with your Model Studio API key: api_key="sk-xxx",
    api_key=os.getenv('DASHSCOPE_API_KEY'),
    model='qwen-vl-ocr-2025-11-20',
    messages=messages,
    # Set the built-in task to multilingual recognition.
    ocr_options={"task": "multi_lan"}
)
# The multilingual recognition task returns the result as plain text.
print(response["output"]["choices"][0]["message"].content[0]["text"])
import java.util.Arrays;
import java.util.Collections;
import java.util.Map;
import java.util.HashMap;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversation;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationParam;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationResult;
import com.alibaba.dashscope.aigc.multimodalconversation.OcrOptions;
import com.alibaba.dashscope.common.MultiModalMessage;
import com.alibaba.dashscope.common.Role;
import com.alibaba.dashscope.exception.ApiException;
import com.alibaba.dashscope.exception.NoApiKeyException;
import com.alibaba.dashscope.exception.UploadFileException;
import com.alibaba.dashscope.utils.Constants;

public class Main {

    static {
      // The following is the base URL for the Singapore region. If you use a model in the US (Virginia) region, change the base_url to https://dashscope-us.aliyuncs.com/api/v1.
      // If you use a model in the China (Beijing) region, change the base_url to https://dashscope.aliyuncs.com/api/v1.
        Constants.baseHttpApiUrl="https://dashscope-intl.aliyuncs.com/api/v1";
    }
    
    public static void simpleMultiModalConversationCall()
            throws ApiException, NoApiKeyException, UploadFileException {
        MultiModalConversation conv = new MultiModalConversation();
        Map<String, Object> map = new HashMap<>();
        map.put("image", "https://img.alicdn.com/imgextra/i2/O1CN01VvUMNP1yq8YvkSDFY_!!6000000006629-2-tps-6000-3000.png");
        // The maximum pixel threshold for the input image. If the image is larger than this value, it is scaled down until the total pixels are less than max_pixels.
        map.put("max_pixels", 8388608);
        // The minimum pixel threshold for the input image. If the image is smaller than this value, it is scaled up until the total pixels are greater than min_pixels.
        map.put("min_pixels", 3072);
        // Specifies whether to enable automatic image rotation.
        map.put("enable_rotate", false);
        
        // Configure the built-in OCR task.
        OcrOptions ocrOptions = OcrOptions.builder()
                .task(OcrOptions.Task.MULTI_LAN)
                .build();
        MultiModalMessage userMessage = MultiModalMessage.builder().role(Role.USER.getValue())
                .content(Arrays.asList(
                        map
                        )).build();
        MultiModalConversationParam param = MultiModalConversationParam.builder()
                // API keys vary by region. To get an API key, see https://www.alibabacloud.com/help/model-studio/get-api-key.
                // If you have not configured an environment variable, replace the following line with your Model Studio API key: .apiKey("sk-xxx")
                .apiKey(System.getenv("DASHSCOPE_API_KEY"))
                .model("qwen-vl-ocr-2025-11-20")
                .message(userMessage)
                .ocrOptions(ocrOptions)
                .build();
        MultiModalConversationResult result = conv.call(param);
        System.out.println(result.getOutput().getChoices().get(0).getMessage().getContent().get(0).get("text"));
    }

    public static void main(String[] args) {
        try {
            simpleMultiModalConversationCall();
        } catch (ApiException | NoApiKeyException | UploadFileException e) {
            System.out.println(e.getMessage());
        }
        System.exit(0);
    }
}
# ======= Important =======
# API keys vary by region. To get an API key, see https://www.alibabacloud.com/help/model-studio/get-api-key.
# The following is the base URL for the Singapore region. If you use a model in the US (Virginia) region, replace the base_url with https://dashscope-us.aliyuncs.com/api/v1/services/aigc/multimodal-generation/generation.
# If you use a model in the China (Beijing) region, replace the base_url with https://dashscope.aliyuncs.com/api/v1/services/aigc/multimodal-generation/generation.
# === Delete this comment before running ===

curl --location 'https://dashscope-intl.aliyuncs.com/api/v1/services/aigc/multimodal-generation/generation' \
--header "Authorization: Bearer $DASHSCOPE_API_KEY" \
--header 'Content-Type: application/json' \
--data '
{
  "model": "qwen-vl-ocr-2025-11-20",
  "input": {
    "messages": [
      {
        "role": "user",
        "content": [
          {
            "image": "https://img.alicdn.com/imgextra/i2/O1CN01VvUMNP1yq8YvkSDFY_!!6000000006629-2-tps-6000-3000.png",
            "min_pixels": 3072,
            "max_pixels": 8388608,
            "enable_rotate": false
          }
        ]
      }
    ]
  },
  "parameters": {
    "ocr_options": {
      "task": "multi_lan"
    }
  }
}
'

Example response

{
  "output": {
    "choices": [{
      "finish_reason": "stop",
      "message": {
        "role": "assistant",
        "content": [{
          "text": "INTERNATIONAL\nMOTHER LANGUAGE\nDAY\nПривіт!\nHello!\nMerhaba!\nBonjour!\nCiao!\nHello!\nOla!\nSalam!\nבר מולדת!"
        }]
      }
    }]
  },
  "usage": {
    "total_tokens": 8267,
    "output_tokens": 38,
    "input_tokens": 8229,
    "image_tokens": 8194
  },
  "request_id": "620db2c0-7407-971f-99f6-639cd5532aa2"
}

Pass a local file (Base64 encoding or file path)

Qwen-VL provides two methods to upload local files: Base64 encoding and direct file path. You can select an upload method based on the file size and SDK type. For specific recommendations, see How to select a file upload method. Both methods must meet the file requirements in Image limits.

Use Base64 encoding

Convert the file to a Base64-encoded string, and then pass it to the model. This method is suitable for OpenAI and DashScope SDKs, and HTTP requests.

Steps to pass a Base64-encoded string

  1. Encode the file: Convert the local image to a Base64-encoded string.

    Example code for converting an image to a Base64-encoded string

    # Encoding function: Converts a local file to a Base64-encoded string.
    def encode_image(image_path):
        with open(image_path, "rb") as image_file:
            return base64.b64encode(image_file.read()).decode("utf-8")
    
    # Replace xxx/eagle.png with the absolute path of your local image.
    base64_image = encode_image("xxx/eagle.png")
  2. Construct a Data URL in the following format: data:[MIME_type];base64,{base64_image}.

    1. Replace MIME_type with the actual media type. Make sure that the type matches the MIME Type value in the Image limits table, such as image/jpeg or image/png.

    2. base64_image is the Base64-encoded string generated in the previous step.

  3. Call the model: Pass the Data URL using the image or image_url parameter to call the model.

Use file path

Pass the local file path directly to the model. This method is supported only by the DashScope Python and Java SDKs. It is not supported for DashScope HTTP or OpenAI-compatible methods.

Refer to the following table to specify the file path based on your programming language and operating system.

Specify a file path (image example)

System

SDK

Input file path

Example

Linux or macOS

Python SDK

file://{absolute_path_of_the_file}

file:///home/images/test.png

Java SDK

Windows operating system

Python SDK

file://{absolute_path_of_the_file}

file://D:/images/test.png

Java SDK

file:///{absolute_path_of_the_file}

file:///D:/images/test.png

Pass a file path

Passing a file path is supported only for calls made with the DashScope Python and Java SDKs. This method is not supported for DashScope HTTP or OpenAI-compatible methods.

Python

import os
import dashscope

# The following is the base URL for the Singapore region. If you use a model in the US (Virginia) region, replace the base_url with https://dashscope-us.aliyuncs.com/api/v1.
# If you use a model in the China (Beijing) region, replace the base_url with https://dashscope.aliyuncs.com/api/v1.
dashscope.base_http_api_url = 'https://dashscope-intl.aliyuncs.com/api/v1'

# Replace xxx/test.jpg with the absolute path of your local image.
local_path = "xxx/test.jpg"
image_path = f"file://{local_path}"
messages = [
    {
        "role": "user",
        "content": [
            {
                "image": image_path,
                # The minimum pixel threshold for the input image. If the image has fewer pixels than this value, the image is scaled up until the total number of pixels is greater than min_pixels.
                "min_pixels": 32 * 32 * 3,
                # The maximum pixel threshold for the input image. If the image has more pixels than this value, the image is scaled down until the total number of pixels is less than max_pixels.
                "max_pixels": 32 * 32 * 8192,
            },
            # If no built-in task is set for the model, you can pass a prompt in the text field. If you do not pass a prompt, the default prompt is used: Please output only the text content from the image without any additional descriptions or formatting.
            {
                "text": "Extract the invoice number, train number, departure station, destination station, departure date and time, seat number, seat type, ticket price, ID card number, and passenger name from the train ticket image. Extract the key information accurately. Do not omit or fabricate information. Replace any single character that is blurry or obscured by glare with a question mark (?). Return the data in JSON format: {'invoice_number': 'xxx', 'train_number': 'xxx', 'departure_station': 'xxx', 'destination_station': 'xxx', 'departure_date_and_time': 'xxx', 'seat_number': 'xxx', 'seat_type': 'xxx', 'ticket_price': 'xxx', 'id_card_number': 'xxx', 'passenger_name': 'xxx'}"
            },
        ],
    }
]

response = dashscope.MultiModalConversation.call(
    # API keys vary by region. To obtain an API key, see https://www.alibabacloud.com/help/en/model-studio/get-api-key.
    # If you have not configured an environment variable, replace the following line with your Model Studio API key: api_key="sk-xxx"
    api_key=os.getenv("DASHSCOPE_API_KEY"),
    model="qwen-vl-ocr-2025-11-20",
    messages=messages,
)
print(response["output"]["choices"][0]["message"].content[0]["text"])

Java

import java.util.Arrays;
import java.util.Collections;
import java.util.Map;
import java.util.HashMap;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversation;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationParam;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationResult;
import com.alibaba.dashscope.common.MultiModalMessage;
import com.alibaba.dashscope.common.Role;
import com.alibaba.dashscope.exception.ApiException;
import com.alibaba.dashscope.exception.NoApiKeyException;
import com.alibaba.dashscope.exception.UploadFileException;
import io.reactivex.Flowable;
import com.alibaba.dashscope.utils.Constants;

public class Main {

    static {
        // The following is the base URL for the Singapore region. If you use a model in the US (Virginia) region, replace the base_url with https://dashscope-us.aliyuncs.com/api/v1.
        // If you use a model in the China (Beijing) region, replace the base_url with https://dashscope.aliyuncs.com/api/v1.
        Constants.baseHttpApiUrl="https://dashscope-intl.aliyuncs.com/api/v1";
    }
    
    public static void simpleMultiModalConversationCall(String localPath)
            throws ApiException, NoApiKeyException, UploadFileException {
        String filePath = "file://"+localPath;
        MultiModalConversation conv = new MultiModalConversation();
        Map<String, Object> map = new HashMap<>();
        map.put("image", filePath);
        // The maximum pixel threshold for the input image. If the image has more pixels than this value, the image is scaled down until the total number of pixels is less than max_pixels.
        map.put("max_pixels", 8388608);
        // The minimum pixel threshold for the input image. If the image has fewer pixels than this value, the image is scaled up until the total number of pixels is greater than min_pixels.
        map.put("min_pixels", 3072);
        MultiModalMessage userMessage = MultiModalMessage.builder().role(Role.USER.getValue())
                .content(Arrays.asList(
                        map,
                        // If no built-in task is set for the model, you can pass a prompt in the text field. If you do not pass a prompt, the default prompt is used: Please output only the text content from the image without any additional descriptions or formatting.
                        Collections.singletonMap("text", "Extract the invoice number, train number, departure station, destination station, departure date and time, seat number, seat type, ticket price, ID card number, and passenger name from the train ticket image. Extract the key information accurately. Do not omit or fabricate information. Replace any single character that is blurry or obscured by glare with a question mark (?). Return the data in JSON format: {'invoice_number': 'xxx', 'train_number': 'xxx', 'departure_station': 'xxx', 'destination_station': 'xxx', 'departure_date_and_time': 'xxx', 'seat_number': 'xxx', 'seat_type': 'xxx', 'ticket_price': 'xxx', 'id_card_number': 'xxx', 'passenger_name': 'xxx'}"))).build();
        MultiModalConversationParam param = MultiModalConversationParam.builder()
                // API keys vary by region. To obtain an API key, see https://www.alibabacloud.com/help/en/model-studio/get-api-key.
                // If you have not configured an environment variable, replace the following line with your Model Studio API key: .apiKey("sk-xxx")
                .apiKey(System.getenv("DASHSCOPE_API_KEY"))
                .model("qwen-vl-ocr-2025-11-20")
                .message(userMessage)
                .build();
        MultiModalConversationResult result = conv.call(param);
        System.out.println(result.getOutput().getChoices().get(0).getMessage().getContent().get(0).get("text"));
    }

    public static void main(String[] args) {
        try {
            // Replace xxx/test.jpg with the absolute path of your local image.
            simpleMultiModalConversationCall("xxx/test.jpg");
        } catch (ApiException | NoApiKeyException | UploadFileException e) {
            System.out.println(e.getMessage());
        }
        System.exit(0);
    }
}

Pass a Base64-encoded string

OpenAI compatible

Python

from openai import OpenAI
import os
import base64

# Read a local file and encode it in Base64 format.
def encode_image(image_path):
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode("utf-8")

# Replace xxx/test.png with the absolute path of your local image.
base64_image = encode_image("xxx/test.png")

client = OpenAI(
    # API keys vary by region. To obtain an API key, see https://www.alibabacloud.com/help/en/model-studio/get-api-key.
    # If you have not configured an environment variable, replace the following line with your Model Studio API key: api_key="sk-xxx"
    api_key=os.getenv('DASHSCOPE_API_KEY'),
    # The following is the base URL for the Singapore region. If you use a model in the US (Virginia) region, replace the base_url with https://dashscope-us.aliyuncs.com/compatible-mode/v1.
    # If you use a model in the China (Beijing) region, replace the base_url with https://dashscope.aliyuncs.com/compatible-mode/v1.
    base_url="https://dashscope-intl.aliyuncs.com/compatible-mode/v1",
)
completion = client.chat.completions.create(
    model="qwen-vl-ocr-2025-11-20",
    messages=[
        {
            "role": "user",
            "content": [
                {
                    "type": "image_url",
                    # Note: When you pass a Base64-encoded string, the image format (image/{format}) must match the Content-Type in the list of supported images. "f" is a string formatting method.
                    # PNG image:  f"data:image/png;base64,{base64_image}"
                    # JPEG image: f"data:image/jpeg;base64,{base64_image}"
                    # WEBP image: f"data:image/webp;base64,{base64_image}"
                    "image_url": {"url": f"data:image/png;base64,{base64_image}"},
                    # The minimum pixel threshold for the input image. If the image has fewer pixels than this value, the image is scaled up until the total number of pixels is greater than min_pixels.
                    "min_pixels": 32 * 32 * 3,
                    # The maximum pixel threshold for the input image. If the image has more pixels than this value, the image is scaled down until the total number of pixels is less than max_pixels.
                    "max_pixels": 32 * 32 * 8192
                },
                 # The model supports passing a prompt in the following text field. If you do not pass a prompt, the default prompt is used: Please output only the text content from the image without any additional descriptions or formatting.
                {"type": "text", "text": "Extract the invoice number, train number, departure station, destination station, departure date and time, seat number, seat type, ticket price, ID card number, and passenger name from the train ticket image. Extract the key information accurately. Do not omit or fabricate information. Replace any single character that is blurry or obscured by glare with a question mark (?). Return the data in JSON format: {'invoice_number': 'xxx', 'train_number': 'xxx', 'departure_station': 'xxx', 'destination_station': 'xxx', 'departure_date_and_time': 'xxx', 'seat_number': 'xxx', 'seat_type': 'xxx', 'ticket_price': 'xxx', 'id_card_number': 'xxx', 'passenger_name': 'xxx'}"},

            ],
        }
    ],
)
print(completion.choices[0].message.content)

Node.js

import OpenAI from "openai";
import {
  readFileSync
} from 'fs';


const client = new OpenAI({
  // API keys vary by region. To obtain an API key, see https://www.alibabacloud.com/help/en/model-studio/get-api-key.
  // If you have not configured an environment variable, replace the following line with your Model Studio API key: apiKey: "sk-xxx"
  apiKey: process.env.DASHSCOPE_API_KEY,
  // The following is the base URL for the Singapore region. If you use a model in the US (Virginia) region, replace the base_url with https://dashscope-us.aliyuncs.com/compatible-mode/v1.
  // If you use a model in the China (Beijing) region, replace the base_url with https://dashscope.aliyuncs.com/compatible-mode/v1.
  baseURL: "https://dashscope-intl.aliyuncs.com/compatible-mode/v1"
});
// Read a local file and encode it in Base64 format.
const encodeImage = (imagePath) => {
  const imageFile = readFileSync(imagePath);
  return imageFile.toString('base64');
};
// Replace xxx/test.png with the absolute path of your local image.
const base64Image = encodeImage("xxx/test.jpg")
async function main() {
  const completion = await client.chat.completions.create({
    model: "qwen-vl-ocr-2025-11-20",
    messages: [{
      "role": "user",
      "content": [{
          "type": "image_url",
          "image_url": {
            // Note: When you pass a Base64-encoded string, the image format (image/{format}) must match the Content-Type in the list of supported images.
            // PNG image:  data:image/png;base64,${base64Image}
            // JPEG image: data:image/jpeg;base64,${base64Image}
            // WEBP image: data:image/webp;base64,${base64Image}
            "url": `data:image/jpeg;base64,${base64Image}`
          },
          // The minimum pixel threshold for the input image. If the image has fewer pixels than this value, the image is scaled up until the total number of pixels is greater than min_pixels.
          "min_pixels": 32 * 32 * 3,
          // The maximum pixel threshold for the input image. If the image has more pixels than this value, the image is scaled down until the total number of pixels is less than max_pixels.
          "max_pixels": 32 * 32 * 8192
        },
        // The model supports passing a prompt in the following text field. If you do not pass a prompt, the default prompt is used: Please output only the text content from the image without any additional descriptions or formatting.
        {
          "type": "text",
          "text": "Extract the invoice number, train number, departure station, destination station, departure date and time, seat number, seat type, ticket price, ID card number, and passenger name from the train ticket image. Extract the key information accurately. Do not omit or fabricate information. Replace any single character that is blurry or obscured by glare with a question mark (?). Return the data in JSON format: {'invoice_number': 'xxx', 'train_number': 'xxx', 'departure_station': 'xxx', 'destination_station': 'xxx', 'departure_date_and_time': 'xxx', 'seat_number': 'xxx', 'seat_type': 'xxx', 'ticket_price': 'xxx', 'id_card_number': 'xxx', 'passenger_name': 'xxx'}"
        }
      ]
    }]
  });
  console.log(completion.choices[0].message.content);
}

main();

curl

  • For information about how to convert a file to a Base64-encoded string, see the example code.

  • For demonstration purposes, the Base64-encoded string "..." in the code is truncated. In practice, you must pass the complete encoded string.

# ======= Important =======
# API keys vary by region. To obtain an API key, see https://www.alibabacloud.com/help/en/model-studio/get-api-key.
# The following is the base URL for the Singapore region. If you use a model in the US (Virginia) region, replace the base_url with https://dashscope-us.aliyuncs.com/compatible-mode/v1/chat/completions.
# If you use a model in the China (Beijing) region, replace the base_url with https://dashscope.aliyuncs.com/compatible-mode/v1/chat/completions.
# === Delete this comment before running ===

curl --location 'https://dashscope-intl.aliyuncs.com/compatible-mode/v1/chat/completions' \
--header "Authorization: Bearer $DASHSCOPE_API_KEY" \
--header 'Content-Type: application/json' \
--data '{
  "model": "qwen-vl-ocr-2025-11-20",
  "messages": [
  {
    "role": "user",
    "content": [
      {"type": "image_url", "image_url": {"url": "..."}},
      {"type": "text", "text": "Extract the invoice number, train number, departure station, destination station, departure date and time, seat number, seat type, ticket price, ID card number, and passenger name from the train ticket image. Extract the key information accurately. Do not omit or fabricate information. Replace any single character that is blurry or obscured by glare with a question mark (?). Return the data in JSON format: {'invoice_number': 'xxx', 'train_number': 'xxx', 'departure_station': 'xxx', 'destination_station': 'xxx', 'departure_date_and_time': 'xxx', 'seat_number': 'xxx', 'seat_type': 'xxx', 'ticket_price': 'xxx', 'id_card_number': 'xxx', 'passenger_name': 'xxx'}"}
    ]
  }]
}'

DashScope

Python

import os
import base64
import dashscope

# The following is the base URL for the Singapore region. If you use a model in the US (Virginia) region, replace the base_url with https://dashscope-us.aliyuncs.com/api/v1.
# If you use a model in the China (Beijing) region, replace the base_url with https://dashscope.aliyuncs.com/api/v1.
dashscope.base_http_api_url = 'https://dashscope-intl.aliyuncs.com/api/v1'

# Base64 encoding format.
def encode_image(image_path):
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode("utf-8")


# Replace xxx/test.jpg with the absolute path of your local image.
base64_image = encode_image("xxx/test.jpg")

messages = [
    {
        "role": "user",
        "content": [
            {
                # Note: When you pass a Base64-encoded string, the image format (image/{format}) must match the Content-Type in the list of supported images. "f" is a string formatting method.
                # PNG image:  f"data:image/png;base64,{base64_image}"
                # JPEG image: f"data:image/jpeg;base64,{base64_image}"
                # WEBP image: f"data:image/webp;base64,{base64_image}"
                "image":  f"data:image/jpeg;base64,{base64_image}",
                # The minimum pixel threshold for the input image. If the image has fewer pixels than this value, the image is scaled up until the total number of pixels is greater than min_pixels.
                "min_pixels": 32 * 32 * 3,
                # The maximum pixel threshold for the input image. If the image has more pixels than this value, the image is scaled down until the total number of pixels is less than max_pixels.
                "max_pixels": 32 * 32 * 8192,
            },
            # If no built-in task is set for the model, you can pass a prompt in the text field. If you do not pass a prompt, the default prompt is used: Please output only the text content from the image without any additional descriptions or formatting.
            {
                "text": "Extract the invoice number, train number, departure station, destination station, departure date and time, seat number, seat type, ticket price, ID card number, and passenger name from the train ticket image. Extract the key information accurately. Do not omit or fabricate information. Replace any single character that is blurry or obscured by glare with a question mark (?). Return the data in JSON format: {'invoice_number': 'xxx', 'train_number': 'xxx', 'departure_station': 'xxx', 'destination_station': 'xxx', 'departure_date_and_time': 'xxx', 'seat_number': 'xxx', 'seat_type': 'xxx', 'ticket_price': 'xxx', 'id_card_number': 'xxx', 'passenger_name': 'xxx'}"
            },
        ],
    }
]

response = dashscope.MultiModalConversation.call(
    # API keys vary by region. To obtain an API key, see https://www.alibabacloud.com/help/en/model-studio/get-api-key.
    # If you have not configured an environment variable, replace the following line with your Model Studio API key: api_key="sk-xxx"
    api_key=os.getenv("DASHSCOPE_API_KEY"),
    model="qwen-vl-ocr-2025-11-20",
    messages=messages,
)

print(response["output"]["choices"][0]["message"].content[0]["text"])

Java

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.*;

import java.util.Arrays;
import java.util.Collections;
import java.util.Map;
import java.util.HashMap;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversation;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationParam;
import com.alibaba.dashscope.aigc.multimodalconversation.MultiModalConversationResult;
import com.alibaba.dashscope.common.MultiModalMessage;
import com.alibaba.dashscope.common.Role;
import com.alibaba.dashscope.exception.ApiException;
import com.alibaba.dashscope.exception.NoApiKeyException;
import com.alibaba.dashscope.exception.UploadFileException;
import io.reactivex.Flowable;
import com.alibaba.dashscope.utils.Constants;

public class Main {

    static {
          // The following is the base URL for the Singapore region. If you use a model in the US (Virginia) region, replace the base_url with https://dashscope-us.aliyuncs.com/api/v1.
          // If you use a model in the China (Beijing) region, replace the base_url with https://dashscope.aliyuncs.com/api/v1.
          Constants.baseHttpApiUrl="https://dashscope-intl.aliyuncs.com/api/v1";
      }
  
      // Base64 encoding format.
    private static String encodeImageToBase64(String imagePath) throws IOException {
        Path path = Paths.get(imagePath);
        byte[] imageBytes = Files.readAllBytes(path);
        return Base64.getEncoder().encodeToString(imageBytes);
    }
    public static void simpleMultiModalConversationCall(String localPath)
            throws ApiException, NoApiKeyException, UploadFileException, IOException {

        String base64Image = encodeImageToBase64(localPath); // Base64 encoding.

        MultiModalConversation conv = new MultiModalConversation();
        Map<String, Object> map = new HashMap<>();
        map.put("image", "data:image/jpeg;base64," + base64Image);
        // The maximum pixel threshold for the input image. If the image has more pixels than this value, the image is scaled down until the total number of pixels is less than max_pixels.
        map.put("max_pixels", 8388608);
        // The minimum pixel threshold for the input image. If the image has fewer pixels than this value, the image is scaled up until the total number of pixels is greater than min_pixels.
        map.put("min_pixels", 3072);
        MultiModalMessage userMessage = MultiModalMessage.builder().role(Role.USER.getValue())
                .content(Arrays.asList(
                        map,
                        // If no built-in task is set for the model, you can pass a prompt in the text field. If you do not pass a prompt, the default prompt is used: Please output only the text content from the image without any additional descriptions or formatting.
                        Collections.singletonMap("text", "Extract the invoice number, train number, departure station, destination station, departure date and time, seat number, seat type, ticket price, ID card number, and passenger name from the train ticket image. Extract the key information accurately. Do not omit or fabricate information. Replace any single character that is blurry or obscured by glare with a question mark (?). Return the data in JSON format: {'invoice_number': 'xxx', 'train_number': 'xxx', 'departure_station': 'xxx', 'destination_station': 'xxx', 'departure_date_and_time': 'xxx', 'seat_number': 'xxx', 'seat_type': 'xxx', 'ticket_price': 'xxx', 'id_card_number': 'xxx', 'passenger_name': 'xxx'}"))).build();
        MultiModalConversationParam param = MultiModalConversationParam.builder()
                // API keys vary by region. To obtain an API key, see https://www.alibabacloud.com/help/en/model-studio/get-api-key.
                // If you have not configured an environment variable, replace the following line with your Model Studio API key: .apiKey("sk-xxx")
                .apiKey(System.getenv("DASHSCOPE_API_KEY"))
                .model("qwen-vl-ocr-2025-11-20")
                .message(userMessage)
                .build();
        MultiModalConversationResult result = conv.call(param);
        System.out.println(result.getOutput().getChoices().get(0).getMessage().getContent().get(0).get("text"));
    }

    public static void main(String[] args) {
        try {
            // Replace xxx/test.jpg with the absolute path of your local image.
            simpleMultiModalConversationCall("xxx/test.jpg");
        } catch (ApiException | NoApiKeyException | UploadFileException | IOException e) {
            System.out.println(e.getMessage());
        }
        System.exit(0);
    }
}

curl

  • For information about how to convert a file to a Base64-encoded string, see the example code.

  • For demonstration purposes, the Base64-encoded string "..." in the code is truncated. In practice, you must pass the complete encoded string.

# ======= Important =======
# API keys vary by region. To obtain an API key, see https://www.alibabacloud.com/help/en/model-studio/get-api-key.
# The following is the base URL for the Singapore region. If you use a model in the US (Virginia) region, replace the base_url with https://dashscope-us.aliyuncs.com/api/v1/services/aigc/multimodal-generation/generation.
# If you use a model in the China (Beijing) region, replace the base_url with https://dashscope.aliyuncs.com/api/v1/services/aigc/multimodal-generation/generation.
# === Delete this comment before running ===

curl -X POST https://dashscope-intl.aliyuncs.com/api/v1/services/aigc/multimodal-generation/generation \
-H "Authorization: Bearer $DASHSCOPE_API_KEY" \
-H 'Content-Type: application/json' \
-d '{
    "model": "qwen-vl-ocr-2025-11-20",
    "input":{
        "messages":[
            {
             "role": "user",
             "content": [
               {"image": "..."},
               {"text": "Extract the invoice number, train number, departure station, destination station, departure date and time, seat number, seat type, ticket price, ID card number, and passenger name from the train ticket image. Extract the key information accurately. Do not omit or fabricate information. Replace any single character that is blurry or obscured by glare with a question mark (?). Return the data in JSON format: {'invoice_number': 'xxx', 'train_number': 'xxx', 'departure_station': 'xxx', 'destination_station': 'xxx', 'departure_date_and_time': 'xxx', 'seat_number': 'xxx', 'seat_type': 'xxx', 'ticket_price': 'xxx', 'id_card_number': 'xxx', 'passenger_name': 'xxx'}"}
                ]
            }
        ]
    }
}'

More usages

Limitations

Image limits

  • Dimensions and aspect ratio: The image width and height must both be greater than 10 pixels. The aspect ratio must not exceed 200:1 or 1:200.

  • Total pixels: The model automatically scales images, so there is no strict limit on the total number of pixels. However, an image cannot exceed 15.68 million pixels.

  • Supported image formats

    • For images with a resolution below 4K (3840x2160), the following formats are supported:

      Image format

      Common extensions

      MIME Type

      BMP

      .bmp

      image/bmp

      JPEG

      .jpe, .jpeg, .jpg

      image/jpeg

      PNG

      .png

      image/png

      TIFF

      .tif, .tiff

      image/tiff

      WEBP

      .webp

      image/webp

      HEIC

      .heic

      image/heic

    • For images with a resolution from 4K(3840x2160) to 8K(7680x4320), only the JPEG, JPG, and PNG formats are supported.

  • Image size:

    • If you provide an image using a public URL or a local path, the image cannot exceed 10 MB.

    • If you provide the data in Base64 encoding, the encoded string cannot exceed 10 MB.

    For more information, see How to compress an image or video to the required size.

Model limits

  • System message: The Qwen-OCR model does not support a custom System Message and uses a fixed internal System Message. You must pass all instructions through the User Message.

  • No multi-turn conversations: The model does not support multi-turn conversations and only answers the most recent question.

  • Hallucination risk: The model may hallucinate if text in an image is too small or has a low resolution. Additionally, the accuracy of answers to questions not related to text extraction is not guaranteed.

  • Error processing text file:

    • For files that contain image data, follow the recommendations in Going live to transform them into an image sequence before processing.

    • For files with plain text or structured data, use Qwen-Long, a model that can parse long text.

Billing and rate limiting

  • Billing: Qwen-OCR is a multimodal model. The total cost is calculated as follows: (Number of input tokens × Unit price for input) + (Number of output tokens × Unit price for output). For more information about how image tokens are calculated, see Image token conversion method. You can view your bills or top up your account in the Expenses and Costs console.

  • Rate limiting: For the rate limits for Qwen-OCR, see Rate limits.

  • Free quota (Singapore only): Qwen-OCR provides a free quota of 1 million tokens. This quota is valid for 90 days, starting from the date you activate Model Studio or your request to use the model is approved.

Going live

  • Processing multi-page documents, such as PDFs:

    1. Split: Use an image editing library, such as Python's pdf2image, to convert each page of a PDF file into a high-quality image.

    2. Submit a request: Use the multi-image input method for recognition.

  • Image pre-processing:

    • Ensure that input images are clear, evenly lit, and not overly compressed:

      • To prevent information loss, use lossless formats, such as PNG, for image storage and transmission.

      • To improve image definition, use denoising algorithms, such as mean or median filtering, to smooth noisy images.

      • To correct uneven lighting, use algorithms such as adaptive histogram equalization to adjust brightness and contrast.

    • For skewed images: Use the DashScope SDK's enable_rotate: true parameter to significantly improve recognition performance.

    • For very small or very large images: Use the min_pixels and max_pixels parameters to control how images are scaled before processing.

      • min_pixels: Enlarges small images to improve detail detection. Keep the default value.

      • max_pixels: Prevents oversized images from consuming excessive resources. For most scenarios, the default value is sufficient. If small text is not recognized clearly, increase the max_pixels value. Note that this increases Token consumption.

  • Result validation: The model's recognition results may contain errors. For critical business operations, implement a manual review process or add validation rules to verify the accuracy of the model's output. For example, use format validation for ID card and bank card numbers.

  • Batch calls: In large-scale, non-real-time scenarios, use the Batch API to asynchronously process batch jobs at a lower cost.

FAQ

How to choose a file upload method?

Choose the best upload method based on the SDK type, file size, and network stability.

Type

Specifications

DashScope SDK (Python, Java)

OpenAI compatible / DashScope HTTP

Image

Greater than 7 MB and less than 10 MB

Pass the local path

Only public URLs are supported. Use Object Storage Service.

Less than 7 MB

Pass the local path

Base64 encoding

Base64 encoding increases the data size. The original file size must be less than 7 MB.
Using a local path or Base64 encoding helps prevent server-side download timeouts and improves stability.

How do I draw detection frames on the original image after the model outputs text localization results?

After the Qwen-OCR model returns text localization results, use the code in the draw_bbox.py file to draw detection frames and their labels on the original image.

API reference

For the input and output parameters of Qwen-OCR, see Qwen-OCR API reference.

Error codes

If a call fails, see Error messages for troubleshooting.