All Products
Search
Document Center

Container Compute Service:inference-nv-pytorch 25.10

Last Updated:Nov 01, 2025

This topic describes the release notes for inference-nv-pytorch 25.10.

Main features and bug fixes

Main features

  • Images are provided for two CUDA versions: CUDA 12.8 and CUDA 13.0.

    • The CUDA 12.8 image supports only the amd64 architecture.

    • The CUDA 13.0 image supports the amd64 and aarch64 architectures. It can be used with L20A/20C instance types.

  • In the CUDA 12.8 image, deepgpu-comfyui is upgraded to 1.3.0, and the deepgpu-torch optimization component is upgraded to 0.1.6+torch2.8.0cu128.

  • In the CUDA 13.0 image, the PyTorch version is upgraded to 2.9.0.

  • In the CUDA 12.8 and CUDA 13.0 images, the vLLM version is upgraded to v0.11.0, and the SGLang version is upgraded to v0.5.4.

Bug fixes

None

Contents

inference-nv-pytorch

Tag

25.10-vllm0.11.0-pytorch2.8-cu128-20251028-serverless

25.10-sglang0.5.4-pytorch2.8-cu128-20251027-serverless

25.10-vllm0.11.0-pytorch2.9-cu130-20251028-serverless

25.10-sglang0.5.4-pytorch2.9-cu130-20251028-serverless

Supported architectures

amd64

amd64

amd64

aarch64

amd64

aarch64

Scenarios

Large model inference

Large model inference

Large model inference

Large model inference

Large model inference

Large model inference

Framework

pytorch

pytorch

pytorch

pytorch

pytorch

pytorch

Requirements

NVIDIA Driver release >= 570

NVIDIA Driver release >= 570

NVIDIA Driver release >= 580

NVIDIA Driver release >= 580

NVIDIA Driver release >= 580

NVIDIA Driver release >= 580

System components

  • Ubuntu 24.04

  • Python 3.12

  • Torch 2.8.0+cu128

  • CUDA 12.8

  • diffusers 0.35.2

  • deepgpu-comfyui 1.3.0

  • deepgpu-torch 0.1.6+torch2.8.0cu128

  • flash_attn 2.8.3

  • imageio 2.37.0

  • imageio-ffmpeg 0.6.0

  • ray 2.50.1

  • transformers 4.57.1

  • triton 3.4.0

  • tokenizers 0.22.1

  • torchaudio 2.8.0+cu128

  • torchsde 0.2.6

  • torchvision 0.23.0+cu128

  • vllm 0.11.0

  • xfuser 0.4.4

  • xgrammar 0.1.25

  • ljperf 0.1.0+477686c5

  • Ubuntu 24.04

  • Python 3.12

  • Torch 2.8.0+cu128

  • CUDA 12.8

  • diffusers 0.35.2

  • decord 0.6.0

  • decord2 2.0.0

  • deepgpu-comfyui 1.3.0

  • deepgpu-torch 0.1.6+torch2.8.0cu128

  • flash_attn 2.8.3

  • flash_mla 1.0.0+1858932

  • flashinfer-python 0.4.1

  • imageio 2.37.0

  • imageio-ffmpeg 0.6.0

  • transformers 4.57.1

  • sgl-kernel 0.3.16.post3

  • sglang 0.5.4

  • xgrammar 0.1.25

  • triton 3.4.0

  • torchao 0.9.0

  • torchaudio 2.8.0+cu128

  • torchsde 0.2.6

  • torchvision 0.23.0+cu128

  • xfuser 0.4.4

  • ljperf 0.1.0+477686c5

  • Ubuntu 24.04

  • Python 3.12

  • Torch 2.9.0+cu130

  • CUDA 13.0.1

  • diffusers 0.35.2

  • flash_attn 2.8.3

  • imageio 2.37.0

  • imageio-ffmpeg 0.6.0

  • ray 2.50.1

  • transformers 4.57.1

  • triton 3.5.0

  • tokenizers 0.22.1

  • torchvision 0.24.0+cu130

  • vllm 0.11.0

  • xfuser 0.4.4

  • xgrammar 0.1.25

  • ljperf 0.1.0+d0e4a408

  • Ubuntu 24.04

  • Python 3.12

  • Torch 2.9.0+cu130

  • CUDA 13.0.1

  • diffusers 0.35.2

  • flash_attn 2.8.3

  • transformers 4.57.1

  • ray 2.50.1

  • vllm 0.11.0

  • triton 3.5.0

  • tokenizers 0.22.1

  • torchaudio 2.9.0

  • torchvision 0.24.0

  • xfuser 0.3

  • xgrammar 0.1.25

  • ljperf 0.1.0+477686c5

  • Ubuntu 24.04

  • Python 3.12

  • Torch 2.9.0+cu130

  • CUDA 13.0.1

  • diffusers 0.35.2

  • decord 0.6.0

  • decord2 2.0.0

  • flash_attn 2.8.3

  • flash_mla 1.0.0+1858932

  • flashinfer-python 0.4.1

  • imageio 2.37.0

  • imageio-ffmpeg 0.6.0

  • transformers 4.57.1

  • sgl-kernel 0.3.16.post3

  • sglang 0.5.4

  • xgrammar 0.1.25

  • triton 3.5.0

  • torchao 0.9.0

  • torchaudio 2.9.0+cu130

  • torchvision 0.24.0+cu130

  • xfuser 0.4.4

  • ljperf 0.1.0+477686c5

  • Ubuntu 24.04

  • Python 3.12

  • Torch 2.9.0+cu130

  • CUDA 13.0.1

  • diffusers 0.35.2

  • decord2 2.0.0

  • flashinfer-python 0.4.1

  • imageio 2.37.0

  • imageio-ffmpeg 0.6.0

  • transformers 4.57.1

  • sgl-kernel 0.3.16.post3

  • sglang 0.5.4

  • xgrammar 0.1.25

  • triton 3.5.0

  • torchao 0.9.0

  • torchaudio 2.9.0

  • torchvision 0.24.0

  • xfuser 0.4.4

Assets

Public images

CUDA 12.8 assets

  • egslingjun-registry.cn-wulanchabu.cr.aliyuncs.com/egslingjun/inference-nv-pytorch:25.10-vllm0.11.0-pytorch2.8-cu128-20251028-serverless

  • egslingjun-registry.cn-wulanchabu.cr.aliyuncs.com/egslingjun/inference-nv-pytorch:25.10-sglang0.5.4-pytorch2.8-cu128-20251027-serverless

CUDA 13.0 assets

  • egslingjun-registry.cn-wulanchabu.cr.aliyuncs.com/egslingjun/inference-nv-pytorch:25.10-vllm0.11.0-pytorch2.9-cu130-20251028-serverless

  • egslingjun-registry.cn-wulanchabu.cr.aliyuncs.com/egslingjun/inference-nv-pytorch:25.10-sglang0.5.4-pytorch2.9-cu130-20251028-serverless

VPC image

  • acs-registry-vpc.{region-id}.cr.aliyuncs.com/egslingjun/{image:tag}

    {region-id} indicates the region where your ACS is activated, such as cn-beijing and cn-wulanchabu.
    {image:tag} indicates the name and tag of the image.
Important

Currently, you can pull only images in the China (Beijing) region over a VPC.

Driver requirements

  • CUDA 12.8: NVIDIA Driver release >= 570

  • CUDA 13.0: NVIDIA Driver release >= 580

Quick start

This example shows how to pull the inference-nv-pytorch image using Docker and test the inference service with the Qwen2.5-7B-Instruct model.

Note

To use the inference-nv-pytorch image in ACS, you can select the image on the Artifacts page when you create a workload in the console or specify the image reference in a YAML file. For more information, see the following topics about building model inference services using ACS GPU computing power:

  1. Pull the inference container image.

    docker pull egslingjun-registry.cn-wulanchabu.cr.aliyuncs.com/egslingjun/inference-nv-pytorch:[tag]
  2. Download the open source model in ModelScope format.

    pip install modelscope
    cd /mnt
    modelscope download --model Qwen/Qwen2.5-7B-Instruct --local_dir ./Qwen2.5-7B-Instruct
  3. Run the following command to start and enter the container.

    docker run -d -t --network=host --privileged --init --ipc=host \
    --ulimit memlock=-1 --ulimit stack=67108864  \
    -v /mnt/:/mnt/ \
    egslingjun-registry.cn-wulanchabu.cr.aliyuncs.com/egslingjun/inference-nv-pytorch:[tag]
  4. Test the vLLM conversational inference feature.

    1. Start the server service.

      python3 -m vllm.entrypoints.openai.api_server \
      --model /mnt/Qwen2.5-7B-Instruct \
      --trust-remote-code --disable-custom-all-reduce \
      --tensor-parallel-size 1
    2. Test on the client.

      curl http://localhost:8000/v1/chat/completions \
          -H "Content-Type: application/json" \
          -d '{
          "model": "/mnt/Qwen2.5-7B-Instruct",  
          "messages": [
          {"role": "system", "content": "You are a friendly AI assistant."},
          {"role": "user", "content": "Tell me about deep learning."}
          ]}'

      For more information about how to use vLLM, see vLLM.

Known issues

  • The deepgpu-comfyui plug-in for Wanx model video generation acceleration currently supports only GN8IS and G49E.