This topic describes the release notes for inference-nv-pytorch 25.03.
Main features and bug fix lists
Main features
PyTorch in the vLLM image is updated to 2.6.0.
vLLM is updated to v0.8.2.
SGLang is updated to v0.4.4.post1.
ACCL-N is updated to 2.23.4.12. New features and bug fixes are provided.
Bug fix
None
Content
inference-nv-pytorch | inference-nv-pytorch | |
Tag | 25.03-vllm0.8.2-pytorch2.6-cu124-20250327-serverless | 25.03-sglang0.4.4.post1-pytorch2.5-cu124-20250327-serverless |
Scenarios | LLM inference | LLM inference |
Framework | PyTorch | PyTorch |
Requirements | NVIDIA driver release >= 550 | NVIDIA driver release >= 550 |
System components |
|
|
Assets
Public image
egslingjun-registry.cn-wulanchabu.cr.aliyuncs.com/egslingjun/inference-nv-pytorch:25.03-vllm0.8.2-pytorch2.6-cu124-20250328-serverless
egslingjun-registry.cn-wulanchabu.cr.aliyuncs.com/egslingjun/inference-nv-pytorch:25.03-sglang0.4.4.post1-pytorch2.5-cu124-20250327-serverless
VPC image
acs-registry-vpc.{region-id}.cr.aliyuncs.com/egslingjun/{image:tag}
{region-id}indicates the region where your ACS is activated, such as cn-beijing and cn-wulanchabu.{image:tag}indicates the name and tag of the image.
Currently, you can pull only images in the China (Beijing) region over a VPC.
The inference-nv-pytorch:25.03-vllm0.8.2-pytorch2.6-cu124-20250328-serverless and inference-nv-pytorch:25.03-sglang0.4.4.post1-pytorch2.5-cu124-20250327-serverless images are suitable for ACS products and Lingjun multi-tenant products. They are not suitable for Lingjun single-tenant products.
Driver requirements
NVIDIA driver release >= 550
Quick Start
The following example uses only Docker to pull the inference-nv-pytorch image and uses the Qwen2.5-7B-Instruct model to test inference services.
To use the inference-nv-pytorch image in ACS, you must select the image from the artifact center page of the console where you create workloads, or specify the image in a YAML file. For more information, refer to the following topics:
Pull the inference container image.
docker pull egslingjun-registry.cn-wulanchabu.cr.aliyuncs.com/egslingjun/inference-nv-pytorch:[tag]Download an open source model in the modelscope format.
pip install modelscope cd /mnt modelscope download --model Qwen/Qwen2.5-7B-Instruct --local_dir ./Qwen2.5-7B-InstructRun the following command to log on to the container.
docker run -d -t --network=host --privileged --init --ipc=host \ --ulimit memlock=-1 --ulimit stack=67108864 \ -v /mnt/:/mnt/ \ egslingjun-registry.cn-wulanchabu.cr.aliyuncs.com/egslingjun/inference-nv-pytorch:[tag]Run an inference test to test the inference conversation feature of vLLM.
Start the Server service.
python3 -m vllm.entrypoints.openai.api_server \ --model /mnt/Qwen2.5-7B-Instruct \ --trust-remote-code --disable-custom-all-reduce \ --tensor-parallel-size 1Test on the client.
curl http://localhost:8000/v1/chat/completions \ -H "Content-Type: application/json" \ -d '{ "model": "/mnt/Qwen2.5-7B-Instruct", "messages": [ {"role": "system", "content": "You are a friendly AI assistant."}, {"role": "user", "content": "Please introduce deep learning."} ]}'For more information about how to work with vLLM, see vLLM.
Known issues
None