All Products
Search
Document Center

Machine Learning Platform for AI:Billing of DLC

Last Updated:Aug 09, 2023

This topic describes the billing of Deep Learning Containers (DLC).

Billing

The following figure shows the DLC billing resources.Billable resources

Billing methods

The following table describes how clusters of the self-managed and public resource group types are billed.

Billable resource

Billable item

Billing rule

Billing method

How to stop billing

Cluster of the self-managed resource group type

Resources, networks, and storage services associated with the ACK cluster

For more information, see Billing.

For more information, see Billing.

Stop the training job or wait until the job is complete.

Cluster of the public resource group type

Running duration of the job

A job is billed based on the amount of time during which public resources are occupied by the job.

Pay-as-you-go

Stop the training job or wait until the job is complete.

Cluster of the public resource group type

The public resource group supports only the pay-as-you-go billing method. The following table describes the billing details.

Billing method

Calculation formula

Unit price

Billing duration

Scaling description

Usage notes

Pay-as-you-go

Bill amount = (Price/60) × Usage duration. The usage duration is measured in minutes.

For more information, see Appendix: Pricing details of the public resource group.

Running duration of the job

N/A

None

Billing examples

Important

The following examples are provided for reference only. The prices listed on the DLC buy page of the Machine Learning Platform for AI (PAI) console shall prevail.

Public resource group

  • Scenario:

    Assume that you use a node of the ecs.g6.2xlarge instance type that is deployed in the China (Shanghai) region to create a training job. The job runs for 1 minute and 15 seconds.

  • Fee calculation:

    1 × 0.6/60 × 1.25 = 0.0125. Unit: USD.

Overdue payments

Causes

You have insufficient balance in your Alibaba Cloud account.
  • Subscription: Your account balance is insufficient to pay for subscription fees.
  • Pay-as-you-go: Your account balance is less than the bill amount of the previous billing cycle. If the system fails to deduct fees, your account enters the overdue state.

Service suspension

  • In PAI, bills are generated within 4 hours after the previous billing cycle ends and displayed by using the T + 1 settlement method. If your account enters the overdue state, you are notified by text message.
  • After your account enters the overdue state, your PAI resources remain available for 24 hours. After 24 hours, your resources are stopped.
Note To ensure service continuity, we recommend that you top up your account in a timely manner.

View the overdue amount

  1. Log on to the Billing Management console.

  2. On the Account Overview page, view the outstanding amount due.账户总览

Refund policy

  • Pay-as-you-go fees cannot be refunded.

  • Subscription fees can be refunded based on the following rules:

    • Five-day money-back guarantee: You are eligible for a full refund for unused resources that are purchased within five days.

    • Partial refund: You are eligible for a refund for the remaining duration. The refund amount is calculated by using the following formula:

      Refund amount = Amount paid - Amount consumed.

    • Refund for renewal orders: You can cancel renewal orders that have not taken effect.

Appendix: Pricing details of the public resource group

The following table lists the pricing details.

Node type

Specifications

GPU type

Unit price (USD per hour)

Region

ecs.g6.2xlarge

8 vCPUs + 32 GB memory

None

0.6

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

  • China (Hong Kong)

  • India (Mumbai)

  • Singapore

  • Malaysia (Kuala Lumpur)

  • Indonesia (Jakarta)

  • Germany (Frankfurt)

ecs.g6.4xlarge

16 vCPUs + 64 GB memory

None

0.6

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

  • India (Mumbai)

1.2

  • Singapore

  • Malaysia (Kuala Lumpur)

  • Indonesia (Jakarta)

  • China (Hong Kong)

  • Germany (Frankfurt)

ecs.g6.8xlarge

32 vCPUs + 128 GB memory

None

1.2

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

1.8

  • India (Mumbai)

  • Singapore

  • Malaysia (Kuala Lumpur)

  • Indonesia (Jakarta)

  • Germany (Frankfurt)

2.4

China (Hong Kong)

ecs.gn5-c28g1.7xlarge

28 vCPUs + 112 GB memory

1 * NVIDIA P100

3.6

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

  • India (Mumbai)

  • Singapore

  • Indonesia (Jakarta)

  • Germany (Frankfurt)

3

China (Hong Kong)

ecs.gn5-c4g1.xlarge

4 vCPUs + 30 GB memory

1 * NVIDIA P100

1.8

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

  • China (Hong Kong)

  • India (Mumbai)

  • Singapore

  • Malaysia (Kuala Lumpur)

  • Indonesia (Jakarta)

  • Germany (Frankfurt)

ecs.gn5-c8g1.2xlarge

8 vCPUs + 60 GB memory

1 * NVIDIA P100

2.4

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

  • China (Hong Kong)

  • India (Mumbai)

  • Singapore

  • Malaysia (Kuala Lumpur)

  • Indonesia (Jakarta)

  • Germany (Frankfurt)

ecs.gn5-c8g1.4xlarge

16 vCPUs + 120 GB memory

2 * NVIDIA P100

4.8

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

  • China (Hong Kong)

  • India (Mumbai)

  • Singapore

  • Malaysia (Kuala Lumpur)

  • Indonesia (Jakarta)

4.2

Germany (Frankfurt)

ecs.gn6e-c12g1.12xlarge

48 vCPUs + 368 GB memory

4 * NVIDIA V100

17.4

India (Mumbai)

18

Singapore

18.6

  • China (Hong Kong)

  • Indonesia (Jakarta)

12.6

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

15.6

Germany (Frankfurt)

ecs.gn6e-c12g1.3xlarge

12 vCPUs + 92 GB memory

1 * NVIDIA V100

4.2

  • India (Mumbai)

  • Singapore

4.8

  • Indonesia (Jakarta)

  • China (Hong Kong)

3

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

3.6

Germany (Frankfurt)

ecs.gn6e-c12g1.24xlarge

96 vCPUs + 736 GB memory

8 * NVIDIA V100

35.4

India (Mumbai)

36

Singapore

37.8

  • Indonesia (Jakarta)

  • China (Hong Kong)

25.8

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

31.8

Germany (Frankfurt)

ecs.gn6v-c8g1.2xlarge

8 vCPUs + 32 GB memory

1 * NVIDIA V100

4.2

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

4.8

Singapore

ecs.gn6v-c8g1.8xlarge

32 vCPUs + 128 GB memory

4 * NVIDIA V100

16.8

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

19.8

Singapore

ecs.gn6v-c8g1.16xlarge

64 vCPUs + 256 GB memory

8 * NVIDIA V100

34.2

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

39.6

Singapore

ecs.gn6v-c10g1.20xlarge

82 vCPUs + 336 GB memory

8 * NVIDIA V100

35.4

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

ecs.r7.16xlarge

64 vCPUs + 512 GB memory

None

4.8

  • Singapore

  • Indonesia (Jakarta)

  • Germany (Frankfurt)

1.8

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

5.4

China (Hong Kong)

ecs.r7.xlarge

4 vCPUs + 32 GB memory

None

0.6

China (Hong Kong)

ecs.r7.2xlarge

8 vCPUs + 64 GB memory

None

0.6

  • Singapore

  • Indonesia (Jakarta)

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

  • China (Hong Kong)

  • Germany (Frankfurt)

ecs.r7.4xlarge

16 vCPUs + 128 GB memory

None

0.6

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

1.2

  • Singapore

  • Indonesia (Jakarta)

  • China (Hong Kong)

  • Germany (Frankfurt)

ecs.r7.6xlarge

24 vCPUs + 192 GB memory

None

1.8

  • Singapore

  • Indonesia (Jakarta)

  • China (Hong Kong)

  • Germany (Frankfurt)

1.2

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

ecs.r7.8xlarge

32 vCPUs + 256 GB memory

None

2.4

  • Singapore

  • Indonesia (Jakarta)

  • China (Hong Kong)

  • Germany (Frankfurt)

1.8

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

ecs.g7.2xlarge

8 vCPUs + 32 GB memory

None

0.6

  • Singapore

  • Indonesia (Jakarta)

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

  • China (Hong Kong)

  • Germany (Frankfurt)

ecs.g7.3xlarge

12 vCPUs + 48 GB memory

ecs.g5.2xlarge

8 vCPUs + 32 GB memory

None

0.6

  • India (Mumbai)

  • Singapore

  • Malaysia (Kuala Lumpur)

  • Indonesia (Jakarta)

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

  • China (Hong Kong)

  • Germany (Frankfurt)

ecs.g6.3xlarge

12 vCPUs + 48 GB memory

ecs.g7.4xlarge

16 vCPUs + 64 GB memory

None

1.2

  • Singapore

  • Indonesia (Jakarta)

  • China (Hong Kong)

0.6

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

  • Germany (Frankfurt)

ecs.r7.3xlarge

12 vCPUs + 96 GB memory

None

0.6

  • Singapore

  • Indonesia (Jakarta)

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

  • Germany (Frankfurt)

1.2

China (Hong Kong)

ecs.c6e.8xlarge

32 vCPUs + 64 GB memory

None

1.8

  • India (Mumbai)

  • Indonesia (Jakarta)

  • China (Hong Kong)

  • Germany (Frankfurt)

1.2

  • Malaysia (Kuala Lumpur)

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

ecs.g6.6xlarge

24 vCPUs + 96 GB memory

None

1.2

  • India (Mumbai)

  • Singapore

  • Malaysia (Kuala Lumpur)

  • Indonesia (Jakarta)

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

  • Germany (Frankfurt)

1.8

China (Hong Kong)

ecs.g7.6xlarge

24 vCPUs + 96 GB memory

None

1.2

  • Singapore

  • Indonesia (Jakarta)

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

  • China (Hong Kong)

  • Germany (Frankfurt)

ecs.g5.4xlarge

16 vCPUs + 64 GB memory

None

0.6

India (Mumbai)

1.2

  • Singapore

  • Malaysia (Kuala Lumpur)

  • Indonesia (Jakarta)

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

  • China (Hong Kong)

  • Germany (Frankfurt)

ecs.hfc6.8xlarge

32 vCPUs + 64 GB memory

None

1.8

  • Singapore

  • Malaysia (Kuala Lumpur)

  • Indonesia (Jakarta)

  • China (Hong Kong)

  • Germany (Frankfurt)

1.2

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

ecs.g7.8xlarge

32 vCPUs + 128 GB memory

None

1.8

  • Singapore

  • Indonesia (Jakarta)

  • Germany (Frankfurt)

1.2

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

2.4

China (Hong Kong)

ecs.hfc6.10xlarge

40 vCPUs + 96 GB memory

None

2.4

  • Singapore

  • Malaysia (Kuala Lumpur)

  • Indonesia (Jakarta)

  • China (Hong Kong)

  • Germany (Frankfurt)

1.2

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

ecs.g6.13xlarge

52 vCPUs + 192 GB memory

None

3

  • India (Mumbai)

  • Malaysia (Kuala Lumpur)

  • Germany (Frankfurt)

3.6

  • Singapore

  • Indonesia (Jakarta)

  • China (Hong Kong)

2.4

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

ecs.g5.8xlarge

32 vCPUs + 128 GB memory

None

1.8

  • India (Mumbai)

  • Malaysia (Kuala Lumpur)

  • Indonesia (Jakarta)

  • China (Hong Kong)

  • Germany (Frankfurt)

2.4

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

  • Singapore

ecs.hfc6.16xlarge

64 vCPUs + 128 GB memory

None

3.6

  • Singapore

  • Malaysia (Kuala Lumpur)

  • Indonesia (Jakarta)

  • China (Hong Kong)

  • Germany (Frankfurt)

2.4

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

ecs.g7.16xlarge

64 vCPUs + 256 GB memory

None

3.6

  • Singapore

  • Indonesia (Jakarta)

  • Germany (Frankfurt)

2.4

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

4.2

China (Hong Kong)

ecs.hfc6.20xlarge

80 vCPUs + 192 GB memory

None

4.8

  • Singapore

  • Indonesia (Jakarta)

  • China (Hong Kong)

4.2

  • Malaysia (Kuala Lumpur)

  • Germany (Frankfurt)

3

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

ecs.g6.26xlarge

104 vCPUs + 384 GB memory

None

5.4

India (Mumbai)

6.6

  • Singapore

  • Malaysia (Kuala Lumpur)

  • Indonesia (Jakarta)

  • Germany (Frankfurt)

4.2

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

7.2

China (Hong Kong)

ecs.g5.16xlarge

64 vCPUs + 256 GB memory

None

3

India (Mumbai)

4.2

  • Singapore

  • Indonesia (Jakarta)

  • China (Hong Kong)

3.6

  • Malaysia (Kuala Lumpur)

  • Germany (Frankfurt)

4.8

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

ecs.gn6i-c4g1.xlarge

4 vCPUs + 15 GB memory

1 * NVIDIA T4

1.2

  • India (Mumbai)

  • Singapore

  • Malaysia (Kuala Lumpur)

  • Indonesia (Jakarta)

  • China (Hong Kong)

  • Germany (Frankfurt)

1.8

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

ecs.gn6i-c8g1.2xlarge

8 vCPUs + 31 GB memory

1 * NVIDIA T4

1.8

  • India (Mumbai)

  • Singapore

  • Malaysia (Kuala Lumpur)

1.2

  • Indonesia (Jakarta)

  • China (Hong Kong)

  • Germany (Frankfurt)

2.4

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

ecs.gn6i-c16g1.4xlarge

16 vCPUs + 62 GB memory

1 * NVIDIA T4

2.4

  • India (Mumbai)

  • Singapore

  • Malaysia (Kuala Lumpur)

  • China (Beijing)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

  • Germany (Frankfurt)

1.8

  • Indonesia (Jakarta)

  • Germany (Frankfurt)

ecs.gn7-c12g1.3xlarge

12 vCPUs + 95 GB memory

1 * NVIDIA A100

3.6

Malaysia (Kuala Lumpur)

5.4

China (Beijing)

2.4

  • China (Shanghai)

  • China (Hangzhou)

ecs.gn6i-c24g1.6xlarge

24 vCPUs + 93 GB memory

1 * NVIDIA T4

2.4

  • India (Mumbai)

  • Indonesia (Jakarta)

  • China (Hong Kong)

  • Germany (Frankfurt)

3

  • Singapore

  • Malaysia (Kuala Lumpur)

  • China (Shanghai)

  • China (Hangzhou)

  • China (Beijing)

  • China (Shenzhen)

ecs.gn7i-c32g1.8xlarge

32 vCPUs + 188 GB memory

1 * NVIDIA A10

6.6

India (Mumbai)

3.6

  • Singapore

  • China (Beijing)

3

Indonesia (Jakarta)

4.8

  • China (Hangzhou)

  • China (Shanghai)

12.6

China (Hong Kong)

2.4

China (Shenzhen)

7.2

Germany (Frankfurt)

ecs.gn7e-c16g1.4xlarge

16 vCPUs + 125 GB memory

1 * NVIDIA A100

6.6

Indonesia (Jakarta)

4.8

China (Beijing)

9.6

  • China (Shanghai)

  • China (Hangzhou)

  • China (Shenzhen)

2.4

China (Hong Kong)

ecs.gn7i-c16g1.4xlarge

16 vCPUs + 60 GB memory

1 * NVIDIA A10

3

  • India (Mumbai)

  • Singapore

  • China (Hong Kong)

7.2

Malaysia (Kuala Lumpur)

6

China (Beijing)

40.8

  • China (Hangzhou)

  • China (Shanghai)

2.4

China (Shenzhen)

ecs.gn6i-c24g1.12xlarge

48 vCPUs + 186 GB memory

2 * NVIDIA T4

4.8

  • India (Mumbai)

  • China (Hong Kong)

5.4

  • Singapore

  • Malaysia (Kuala Lumpur)

  • Indonesia (Jakarta)

  • China (Beijing)

  • China (Hangzhou)

  • China (Shanghai)

  • China (Shenzhen)

  • Germany (Frankfurt)

ecs.gn7i-c32g1.16xlarge

64 vCPUs + 376 GB memory

2 * NVIDIA A10

13.2

India (Mumbai)

6.6

Singapore

3

  • Indonesia (Jakarta)

  • China (Beijing)

  • China (Shenzhen)

6

  • China (Hangzhou)

  • China (Shanghai)

14.4

Germany (Frankfurt)

ecs.gn7-c13g1.13xlarge

52 vCPUs + 380 GB memory

4 * NVIDIA A10

3

  • Malaysia (Kuala Lumpur)

  • China (Hangzhou)

  • China (Shanghai)

12.6

China (Beijing)

ecs.gn7i-c32g1.32xlarge

128 vCPUs + 752 GB memory

4 * NVIDIA A10

3

  • India (Mumbai)

  • Indonesia (Jakarta)

13.8

Singapore

2.4

  • China (Beijing)

  • China (Shenzhen)

3.6

  • China (Hangzhou)

  • China (Shanghai)

ecs.gn6i-c24g1.24xlarge

96 vCPUs + 372 GB memory

4 * NVIDIA T4

10.2

  • India (Mumbai)

  • Indonesia (Jakarta)

10.8

  • Singapore

  • Malaysia (Kuala Lumpur)

  • China (Beijing)

  • China (Hangzhou)

  • China (Shanghai)

  • China (Shenzhen)

  • Germany (Frankfurt)

9.6

China (Hong Kong)

ecs.gn6v-c10g1.20xlarge

82 vCPUs + 336 GB memory

8 * NVIDIA V100

35.4

  • China (Beijing)

  • China (Hangzhou)

  • China (Shanghai)

  • China (Shenzhen)

ecs.gn7-c13g1.26xlarge

104 vCPUs + 760 GB memory

8 * NVIDIA A100

3

  • Malaysia (Kuala Lumpur)

  • China (Beijing)

3.6

  • China (Hangzhou)

  • China (Shanghai)

ecs.ebmgn7e.32xlarge

128 vCPUs + 1,024 GB memory

8 * NVIDIA A100

45

  • China (Beijing)

  • China (Hangzhou)

  • China (Shanghai)

  • China (Shenzhen)

50.4

Germany (Frankfurt)