This topic describes the release notes for inference-nv-pytorch 25.08.
Main features and bug fix lists
Main features
Upgraded vLLM to v0.10.0.
Upgraded SGLang to v0.4.10.post2.
Bug fix
(None)
Contents
inference-nv-pytorch | inference-nv-pytorch | |
Tag | 25.08-vllm0.10.0-pytorch2.7-cu128-20250811-serverless | 25.08-sglang0.4.10.post2-pytorch2.7-cu128-20250808-serverless |
Application scenario | Large model inference | Large model inference |
Framework | PyTorch | PyTorch |
Requirements | NVIDIA Driver release >= 570 | NVIDIA Driver release >= 570 |
System components |
|
|
Asset
Internet images
egslingjun-registry.cn-wulanchabu.cr.aliyuncs.com/egslingjun/inference-nv-pytorch:25.08-vllm0.10.0-pytorch2.7-cu128-20250811-serverless
egslingjun-registry.cn-wulanchabu.cr.aliyuncs.com/egslingjun/inference-nv-pytorch:25.08-sglang0.4.10.post2-pytorch2.7-cu128-20250808-serverless
VPC image
acs-registry-vpc.{region-id}.cr.aliyuncs.com/egslingjun/{image:tag}
{region-id}indicates the region where your ACS is activated, such as cn-beijing and cn-wulanchabu.{image:tag}indicates the name and tag of the image.
Currently, you can pull only images in the China (Beijing) region over a VPC.
The inference-nv-pytorch:25.08-vllm0.10.0-pytorch2.7-cu128-20250811-serverless and inference-nv-pytorch:25.08-sglang0.4.10.post2-pytorch2.7-cu128-20250808-serverless images are applicable to ACS products and Lingjun multi-tenant products, but not to Lingjun single-tenant products.
Driver requirements
NVIDIA Driver release >= 570
Quick start
The following example shows how to pull the inference-nv-pytorch image using Docker and test the inference service with the Qwen2.5-7B-Instruct model.
To use the inference-nv-pytorch image in ACS, you can select the image on the Artifacts page when you create a workload in the console, or specify the image reference in a YAML file. For more information, see the following topics about building model inference services using ACS GPU computing power:
Build a DeepSeek distilled model inference service using ACS GPU computing power
Build a full-featured DeepSeek model inference service using ACS GPU computing power
Build a distributed full-featured DeepSeek inference service using ACS GPU computing power
Accelerate Wan2.1 video generation using DeepGPU
Pull the inference container image.
docker pull egslingjun-registry.cn-wulanchabu.cr.aliyuncs.com/egslingjun/inference-nv-pytorch:[tag]Download the open-source model in ModelScope format.
pip install modelscope cd /mnt modelscope download --model Qwen/Qwen2.5-7B-Instruct --local_dir ./Qwen2.5-7B-InstructRun the following command to start and enter the container.
docker run -d -t --network=host --privileged --init --ipc=host \ --ulimit memlock=-1 --ulimit stack=67108864 \ -v /mnt/:/mnt/ \ egslingjun-registry.cn-wulanchabu.cr.aliyuncs.com/egslingjun/inference-nv-pytorch:[tag]Test the vLLM inference and conversation feature.
Start the service.
python3 -m vllm.entrypoints.openai.api_server \ --model /mnt/Qwen2.5-7B-Instruct \ --trust-remote-code --disable-custom-all-reduce \ --tensor-parallel-size 1Run a test from the client.
curl http://localhost:8000/v1/chat/completions \ -H "Content-Type: application/json" \ -d '{ "model": "/mnt/Qwen2.5-7B-Instruct", "messages": [ {"role": "system", "content": "You are a friendly AI assistant."}, {"role": "user", "content": "Tell me about deep learning."} ]}'For more information about how to use vLLM, see vLLM.
Known issues
The deepgpu-comfyui plug-in, which accelerates video generation for Wanx models, currently supports only GN8IS and G49E.