All Products
Search
Document Center

Container Compute Service:inference-nv-pytorch 25.08

Last Updated:Aug 28, 2025

This topic describes the release notes for inference-nv-pytorch 25.08.

Main features and bug fix lists

Main features

  • Upgraded vLLM to v0.10.0.

  • Upgraded SGLang to v0.4.10.post2.

Bug fix

(None)

Contents

inference-nv-pytorch

inference-nv-pytorch

Tag

25.08-vllm0.10.0-pytorch2.7-cu128-20250811-serverless

25.08-sglang0.4.10.post2-pytorch2.7-cu128-20250808-serverless

Application scenario

Large model inference

Large model inference

Framework

PyTorch

PyTorch

Requirements

NVIDIA Driver release >= 570

NVIDIA Driver release >= 570

System components

  • Ubuntu 24.04

  • Python 3.12

  • Torch 2.7.1+cu128

  • CUDA 12.8

  • NCCL 2.27.5

  • diffusers 0.34.0

  • deepgpu-comfyui 1.1.7

  • deepgpu-torch 0.0.24+torch2.7.0cu128

  • flash_attn 2.8.2

  • imageio 2.37.0

  • imageio-ffmpeg 0.6.0

  • diffusers 0.34.0

  • ray 2.48.0

  • transformers 4.55.0

  • triton 3.3.1

  • vllm 0.10.0

  • xformers 0.0.31

  • xfuser 0.4.4

  • xgrammar 0.1.21

  • Ubuntu 24.04

  • Python 3.12

  • Torch 2.7.1+cu128

  • CUDA 12.8

  • NCCL 2.27.5

  • diffusers 0.34.0

  • deepgpu-comfyui 1.1.7

  • deepgpu-torch 0.0.24+torch2.7.0cu128

  • flash_attn 2.8.2

  • flash_mla 1.0.0+41b611f

  • flashinfer-python 0.2.9rc2

  • imageio 2.37.0

  • imageio-ffmpeg 0.6.0

  • diffusers 0.34.0

  • transformers 4.54.1

  • sgl-kernel 0.2.8

  • sglang 0.4.10.post2

  • xgrammar 0.1.22

  • triton 3.3.1

  • torchao 0.9.0

Asset

Internet images

  • egslingjun-registry.cn-wulanchabu.cr.aliyuncs.com/egslingjun/inference-nv-pytorch:25.08-vllm0.10.0-pytorch2.7-cu128-20250811-serverless

  • egslingjun-registry.cn-wulanchabu.cr.aliyuncs.com/egslingjun/inference-nv-pytorch:25.08-sglang0.4.10.post2-pytorch2.7-cu128-20250808-serverless

VPC image

  • acs-registry-vpc.{region-id}.cr.aliyuncs.com/egslingjun/{image:tag}

    {region-id} indicates the region where your ACS is activated, such as cn-beijing and cn-wulanchabu.
    {image:tag} indicates the name and tag of the image.
Important

Currently, you can pull only images in the China (Beijing) region over a VPC.

Note

The inference-nv-pytorch:25.08-vllm0.10.0-pytorch2.7-cu128-20250811-serverless and inference-nv-pytorch:25.08-sglang0.4.10.post2-pytorch2.7-cu128-20250808-serverless images are applicable to ACS products and Lingjun multi-tenant products, but not to Lingjun single-tenant products.

Driver requirements

NVIDIA Driver release >= 570

Quick start

The following example shows how to pull the inference-nv-pytorch image using Docker and test the inference service with the Qwen2.5-7B-Instruct model.

Note

To use the inference-nv-pytorch image in ACS, you can select the image on the Artifacts page when you create a workload in the console, or specify the image reference in a YAML file. For more information, see the following topics about building model inference services using ACS GPU computing power:

  1. Pull the inference container image.

    docker pull egslingjun-registry.cn-wulanchabu.cr.aliyuncs.com/egslingjun/inference-nv-pytorch:[tag]
  2. Download the open-source model in ModelScope format.

    pip install modelscope
    cd /mnt
    modelscope download --model Qwen/Qwen2.5-7B-Instruct --local_dir ./Qwen2.5-7B-Instruct
  3. Run the following command to start and enter the container.

    docker run -d -t --network=host --privileged --init --ipc=host \
    --ulimit memlock=-1 --ulimit stack=67108864  \
    -v /mnt/:/mnt/ \
    egslingjun-registry.cn-wulanchabu.cr.aliyuncs.com/egslingjun/inference-nv-pytorch:[tag]
  4. Test the vLLM inference and conversation feature.

    1. Start the service.

      python3 -m vllm.entrypoints.openai.api_server \
      --model /mnt/Qwen2.5-7B-Instruct \
      --trust-remote-code --disable-custom-all-reduce \
      --tensor-parallel-size 1
    2. Run a test from the client.

      curl http://localhost:8000/v1/chat/completions \
          -H "Content-Type: application/json" \
          -d '{
          "model": "/mnt/Qwen2.5-7B-Instruct",  
          "messages": [
          {"role": "system", "content": "You are a friendly AI assistant."},
          {"role": "user", "content": "Tell me about deep learning."}
          ]}'

      For more information about how to use vLLM, see vLLM.

Known issues

  • The deepgpu-comfyui plug-in, which accelerates video generation for Wanx models, currently supports only GN8IS and G49E.