全部产品
Search
文档中心

Container Service for Kubernetes:Implementasikan perutean cerdas dan manajemen trafik menggunakan Gateway dengan Ekstensi Inferensi

更新时间:Jul 06, 2025

Untuk layanan inferensi model bahasa besar (LLM) dalam kluster Kubernetes, metode penyeimbangan beban tradisional sering kali mengandalkan alokasi trafik sederhana yang tidak dapat menangani permintaan kompleks dan beban lalu lintas dinamis selama proses inferensi LLM. Topik ini menjelaskan cara mengonfigurasi ekstensi layanan inferensi menggunakan Gateway dengan Ekstensi Inferensi untuk mencapai perutean cerdas dan manajemen trafik yang efisien.

Informasi latar belakang

Model bahasa besar (LLM)

Model bahasa besar (LLM) adalah model berbasis jaringan saraf dengan miliaran parameter, seperti GPT, Qwen, dan Llama. Model-model ini dilatih pada dataset pra-pelatihan yang luas, termasuk teks web, literatur profesional, dan kode, serta digunakan terutama untuk tugas-tugas generasi teks seperti penyelesaian dan dialog.

Untuk memanfaatkan LLM dalam membangun aplikasi, Anda dapat:

  • Memanfaatkan layanan API LLM eksternal dari platform seperti OpenAI, Alibaba Cloud Model Studio, atau Moonshot.

  • Membangun layanan inferensi LLM Anda sendiri menggunakan model dan kerangka kerja open-source atau proprietary seperti vLLM, dan menerapkannya di kluster Kubernetes. Pendekatan ini cocok untuk skenario yang memerlukan kontrol atas layanan inferensi atau penyesuaian tinggi kemampuan inferensi LLM.

vLLM

vLLM adalah kerangka kerja yang dirancang untuk konstruksi layanan inferensi LLM yang efisien dan ramah pengguna. Ini mendukung berbagai model bahasa besar, termasuk Qwen, dan mengoptimalkan efisiensi inferensi LLM melalui teknik seperti PagedAttention, inferensi batch dinamis (Continuous Batching), dan kuantisasi model.

Cache KV

Selama proses inferensi, cache kunci dan nilai yang dihasilkan oleh model digunakan untuk mengakses informasi kontekstual dari permintaan historis dengan cepat. Ini meningkatkan efisiensi pembuatan teks oleh model. Penggunaan Cache KV dapat menghindari komputasi redundan, mempercepat kecepatan inferensi, dan mengurangi latensi respons model.

Prosedur

Gambar berikut adalah bagan alur.

  1. Di inference-gateway, port 8080 diatur dengan rute HTTP standar untuk meneruskan permintaan ke layanan inferensi backend. Port 8081 merutekan permintaan ke ekstensi layanan inferensi (LLM Route), yang kemudian meneruskan permintaan ke layanan inferensi backend.

  2. Di HTTP Route, sumber daya InferencePool digunakan untuk mendeklarasikan sekelompok beban kerja layanan inferensi LLM di kluster. Konfigurasikan InferenceModel untuk menentukan kebijakan distribusi trafik untuk model yang dipilih dalam InferencePool. Dengan cara ini, permintaan yang dirutekan melalui komponen inference-gateway pada port 8081 diarahkan ke beban kerja layanan inferensi yang ditentukan oleh InferencePool menggunakan algoritma penyeimbangan beban canggih yang dirancang untuk layanan inferensi.

Prasyarat

Sebuah kluster ACK dikelola dengan kumpulan node GPU dibuat. Anda dapat menginstal komponen ACK Virtual Node di kluster ACK dikelola untuk menggunakan daya komputasi ACS dalam kluster ACK Pro.

Prosedur

Langkah 1: Terapkan layanan inferensi contoh

  1. Buat file bernama vllm-service.yaml dan salin konten berikut ke file tersebut:

    Catatan

    Untuk gambar yang digunakan dalam topik ini, kami merekomendasikan Anda menggunakan kartu A10 untuk kluster ACK dan kartu GN8IS untuk daya komputasi GPU Layanan Komputasi Kontainer Alibaba Cloud (ACS).

    Karena ukuran gambar LLM yang besar, kami merekomendasikan Anda mentransfernya ke Container Registry terlebih dahulu dan menariknya menggunakan alamat jaringan internal. Kecepatan menarik dari jaringan publik bergantung pada konfigurasi bandwidth alamat IP elastis (EIP) kluster, yang dapat mengakibatkan waktu tunggu lebih lama.

    Lihat YAML

    apiVersion: apps/v1
    kind: Deployment
    metadata:
      labels:
        app: qwen
      name: qwen
    spec:
      replicas: 5
      selector:
        matchLabels:
          app: qwen
      template:
        metadata:
          annotations:
            prometheus.io/path: /metrics
            prometheus.io/port: "8000"
            prometheus.io/scrape: "true"
          labels:
            app: qwen
        spec:
          containers:
          - command:
            - sh
            - -c
            - vllm serve /models/Qwen-2.5-7B-Instruct --port 8000 --trust-remote-code --served-model-name /model/qwen --max-model-len 8192 --gpu-memory-utilization 0.95 --enforce-eager --enable-lora --max-loras 2 --max-cpu-loras 4 --lora-modules travel-helper-v1=/models/Qwen-TravelHelper-Lora travel-helper-v2=/models/Qwen-TravelHelper-Lora-v2
            image: registry-cn-hangzhou.ack.aliyuncs.com/dev/qwen-2.5-7b-instruct-lora:v0.1
            imagePullPolicy: IfNotPresent
            name: custom-serving
            ports:
            - containerPort: 8000
              name: http
              protocol: TCP
            readinessProbe:
              failureThreshold: 3
              initialDelaySeconds: 30
              periodSeconds: 30
              successThreshold: 1
              tcpSocket:
                port: 8000
              timeoutSeconds: 1
            resources:
              limits:
                nvidia.com/gpu: "1"
            terminationMessagePath: /dev/termination-log
            terminationMessagePolicy: File
            volumeMounts:
            - mountPath: /dev/shm
              name: dshm
          dnsPolicy: ClusterFirst
          restartPolicy: Always
          schedulerName: default-scheduler
          securityContext: {}
          terminationGracePeriodSeconds: 30
          volumes:
          - emptyDir:
              medium: Memory
              sizeLimit: 30Gi
            name: dshm
    ---
    apiVersion: v1
    kind: Service
    metadata:
      labels:
        app: qwen
      name: qwen
    spec:
      ports:
      - name: http-serving
        port: 8000
        protocol: TCP
        targetPort: 8000
      selector:
        app: qwen
  2. Terapkan layanan inferensi contoh.

    kubectl apply -f vllm-service.yaml

Langkah 2: Instal komponen Gateway dengan Ekstensi Inferensi

Instal komponen ACK Gateway dengan Ekstensi Inferensi dan pilih Enable Gateway API Inference Extension.

image

Langkah 3: Terapkan perutean inferensi

Langkah ini melibatkan pembuatan sumber daya InferencePool dan InferenceModel.

  1. Buat file bernama inference-pool.yaml.

    apiVersion: inference.networking.x-k8s.io/v1alpha2
    kind: InferencePool
    metadata:
      name: vllm-qwen-pool
    spec:
      targetPortNumber: 8000
      selector:
        app: qwen
      extensionRef:
        name: inference-gateway-ext-proc
    ---
    apiVersion: inference.networking.x-k8s.io/v1alpha2
    kind: InferenceModel
    metadata:
      name: inferencemodel-qwen
    spec:
      modelName: /model/qwen
      criticality: Critical
      poolRef:
        group: inference.networking.x-k8s.io
        kind: InferencePool
        name: vllm-qwen-pool
      targetModels:
      - name: /model/qwen
        weight: 100
  2. Terapkan perutean inferensi.

    kubectl apply -f inference-gateway-llm.yaml

Langkah 4: Terapkan dan verifikasi gateway

Langkah ini membuat gateway yang mencakup port 8080 dan 8081.

  1. Buat file bernama inference-gateway.yaml.

    apiVersion: gateway.networking.k8s.io/v1
    kind: GatewayClass
    metadata:
      name: qwen-inference-gateway-class
    spec:
      controllerName: gateway.envoyproxy.io/gatewayclass-controller
    ---
    apiVersion: gateway.networking.k8s.io/v1
    kind: Gateway
    metadata:
      name: qwen-inference-gateway
    spec:
      gatewayClassName: qwen-inference-gateway-class
      listeners:
        - name: http
          protocol: HTTP
          port: 8080
        - name: llm-gw
          protocol: HTTP
          port: 8081
    ---
    apiVersion: gateway.networking.k8s.io/v1
    kind: HTTPRoute
    metadata:
      name: qwen-backend
    spec:
      parentRefs:
        - name: qwen-inference-gateway
          sectionName: llm-gw
      rules:
        - backendRefs:
            - group: inference.networking.x-k8s.io
              kind: InferencePool
              name: vllm-qwen-pool
          matches:
            - path:
                type: PathPrefix
                value: /
    ---
    apiVersion: gateway.networking.k8s.io/v1
    kind: HTTPRoute
    metadata:
      name: qwen-backend-no-inference
    spec:
      parentRefs:
      - group: gateway.networking.k8s.io
        kind: Gateway
        name: qwen-inference-gateway
        sectionName: http
      rules:
      - backendRefs:
        - group: ""
          kind: Service
          name: qwen
          port: 8000
          weight: 1
        matches:
        - path:
            type: PathPrefix
            value: /
    ---
    apiVersion: gateway.envoyproxy.io/v1alpha1
    kind: BackendTrafficPolicy
    metadata:
      name: backend-timeout
    spec:
      timeout:
        http:
          requestTimeout: 1h
      targetRef:
        group: gateway.networking.k8s.io
        kind: Gateway
        name: qwen-inference-gateway
  2. Terapkan gateway.

    kubectl apply -f inference-gateway.yaml

    Langkah ini membuat namespace bernama envoy-gateway-system dan layanan bernama envoy-default-inference-gateway-645xxxxx di kluster.

  3. Dapatkan alamat IP publik gateway.

    export GATEWAY_HOST=$(kubectl get gateway/qwen-inference-gateway -o jsonpath='{.status.addresses[0].value}')
  4. Verifikasi bahwa gateway merutekan ke layanan inferensi melalui perutean HTTP standar pada port 8080.

    curl -X POST ${GATEWAY_HOST}:8080/v1/chat/completions -H 'Content-Type: application/json' -d '{
        "model": "/model/qwen",
        "max_completion_tokens": 100,
        "temperature": 0,
        "messages": [
          {
            "role": "user",
            "content": "Tulis seolah-olah Anda seorang kritikus: San Francisco"
          }
        ]
    }'

    Output yang diharapkan:

    {"id":"chatcmpl-aa6438e2-d65b-4211-afb8-ae8e76e7a692","object":"chat.completion","created":1747191180,"model":"/model/qwen","choices":[{"index":0,"message":{"role":"assistant","reasoning_content":null,"content":"San Francisco, sebuah kota yang telah lama menjadi mercusuar inovasi, budaya, dan keberagaman, terus memikat dunia dengan pesona dan karakter uniknya. Sebagai seorang kritikus, saya merasa diri saya baik terpesona maupun sesekali bingung oleh kepribadian multifaset kota ini.\n\nArsitektur San Francisco adalah bukti sejarah kaya dan semangat progresifnya. Kereta kabel ikonik, rumah-rumah Victoria, dan Jembatan Golden Gate bukan hanya atraksi turis tetapi simbol daya tarik abadi kota ini. Namun, ","tool_calls":[]},"logprobs":null,"finish_reason":"length","stop_reason":null}],"usage":{"prompt_tokens":39,"total_tokens":139,"completion_tokens":100,"prompt_tokens_details":null},"prompt_logprobs":null}
  5. Verifikasi bahwa gateway merutekan ke layanan inferensi melalui ekstensi layanan inferensi pada port 8081.

    curl -X POST ${GATEWAY_HOST}:8081/v1/chat/completions -H 'Content-Type: application/json' -d '{
        "model": "/model/qwen",
        "max_completion_tokens": 100,
        "temperature": 0,
        "messages": [
          {
            "role": "user",
            "content": "Tulis seolah-olah Anda seorang kritikus: Los Angeles"
          }
        ]
    }'

    Output yang diharapkan:

    {"id":"chatcmpl-cc4fcd0a-6a66-4684-8dc9-284d4eb77bb7","object":"chat.completion","created":1747191969,"model":"/model/qwen","choices":[{"index":0,"message":{"role":"assistant","reasoning_content":null,"content":"Los Angeles, metropolitan yang luas sering disebut sebagai \"L.A.,\" adalah sebuah kota yang sulit dideskripsikan dengan mudah. Ini adalah tempat di mana mimpi dibuat dan hancur, di mana matahari tak pernah tenggelam, dan di mana batas antara realitas dan fantasi sama kaburnya dengan polusi yang sering menggantung di lembah-lembahnya. Sebagai seorang kritikus, saya merasa diri saya baik terpesona maupun bingung oleh kota ini yang merupakan sebanyak keadaan pikiran seperti halnya tempat fisik.\n\nDi satu sisi, Los","tool_calls":[]},"logprobs":null,"finish_reason":"length","stop_reason":null}],"usage":{"prompt_tokens":39,"total_tokens":139,"completion_tokens":100,"prompt_tokens_details":null},"prompt_logprobs":null}

(Opsional) Langkah 5: Konfigurasikan metrik observabilitas layanan LLM dan dasbor

Catatan

Anda harus mengaktifkan dan menggunakan Managed Service for Prometheus di kluster, yang mungkin mengakibatkan biaya tambahan.

  1. Tambahkan anotasi pengumpulan metrik Prometheus ke pod layanan vLLM untuk mengumpulkan metrik menggunakan mekanisme penemuan layanan default dari instance Prometheus. Ini memantau status internal layanan vLLM.

    ...
    annotations:
      prometheus.io/path: /metrics # Jalur HTTP tempat Anda ingin mengekspos metrik.
      prometheus.io/port: "8000" # Port yang diekspos untuk metrik, yaitu port mendengarkan server vLLM.
      prometheus.io/scrape: "true" # Menentukan apakah akan mengambil metrik pod saat ini.
    ...

    Tabel berikut menampilkan beberapa metrik pemantauan yang disediakan oleh layanan vLLM:

    Metrik

    Deskripsi

    vllm:gpu_cache_usage_perc

    Persentase penggunaan cache GPU oleh vLLM. Saat vLLM dimulai, ia secara proaktif menempati sebanyak mungkin memori video GPU untuk Cache KV. Untuk server vLLM, semakin rendah utilitas, semakin banyak ruang yang dimiliki GPU untuk mengalokasikan sumber daya ke permintaan baru.

    vllm:request_queue_time_seconds_sum

    Waktu yang dihabiskan dalam antrian dalam keadaan menunggu. Setelah permintaan inferensi LLM tiba di server vLLM, mereka mungkin tidak diproses segera dan perlu menunggu penjadwal vLLM untuk menjadwalkan prefill dan decode.

    vllm:num_requests_running

    vllm:num_requests_waiting

    vllm:num_requests_swapped

    Jumlah permintaan yang menjalankan inferensi, menunggu, dan dipindahkan ke memori. Ini dapat digunakan untuk menilai tekanan permintaan saat ini pada layanan vLLM.

    vllm:avg_generation_throughput_toks_per_s

    vllm:avg_prompt_throughput_toks_per_s

    Jumlah token yang dikonsumsi per detik selama tahap prefill dan dihasilkan selama tahap decode.

    vllm:time_to_first_token_seconds_bucket

    Tingkat latensi dari saat permintaan dikirim ke layanan vLLM hingga token pertama direspons. Metrik ini biasanya mewakili waktu yang diperlukan bagi klien untuk menerima respons pertama setelah mengeluarkan konten permintaan dan merupakan metrik penting yang memengaruhi pengalaman pengguna LLM.

    Berdasarkan metrik ini, Anda dapat menetapkan aturan peringatan tertentu untuk memungkinkan pemantauan real-time dan deteksi anomali kinerja layanan LLM.

  2. Konfigurasikan dasbor Grafana untuk pemantauan real-time layanan inferensi LLM. Anda dapat menggunakan dasbor Grafana untuk mengamati layanan inferensi LLM yang diterapkan berdasarkan vLLM:

    • Monitor laju permintaan dan throughput token total untuk layanan LLM.

    • Monitor status internal beban kerja inferensi.

    Pastikan bahwa instance Prometheus, yang berfungsi sebagai sumber data untuk Grafana, telah mengumpulkan metrik pemantauan untuk vLLM. Untuk membuat dasbor yang dapat diamati untuk layanan inferensi LLM, Anda dapat mengimpor konten berikut ke Grafana:

    image

    Lihat JSON

    {
      "annotations": {
        "list": [
          {
            "builtIn": 1,
            "datasource": {
              "type": "grafana",
              "uid": "-- Grafana --"
            },
            "enable": true,
            "hide": true,
            "iconColor": "rgba(0, 211, 255, 1)",
            "name": "Annotations & Alerts",
            "target": {
              "limit": 100,
              "matchAny": false,
              "tags": [],
              "type": "dashboard"
            },
            "type": "dashboard"
          }
        ]
      },
      "description": "Monitoring vLLM Inference Server",
      "editable": true,
      "fiscalYearStartMonth": 0,
      "graphTooltip": 0,
      "id": 1,
      "links": [],
      "liveNow": false,
      "panels": [
        {
          "datasource": {
            "type": "prometheus",
            "uid": "${DS_PROMETHEUS}"
          },
          "description": "End to end request latency measured in seconds.",
          "fieldConfig": {
            "defaults": {
              "color": {
                "mode": "palette-classic"
              },
              "custom": {
                "axisBorderShow": false,
                "axisCenteredZero": false,
                "axisColorMode": "text",
                "axisLabel": "",
                "axisPlacement": "auto",
                "barAlignment": 0,
                "barWidthFactor": 0.6,
                "drawStyle": "line",
                "fillOpacity": 0,
                "gradientMode": "none",
                "hideFrom": {
                  "legend": false,
                  "tooltip": false,
                  "viz": false
                },
                "insertNulls": false,
                "lineInterpolation": "linear",
                "lineWidth": 1,
                "pointSize": 5,
                "scaleDistribution": {
                  "type": "linear"
                },
                "showPoints": "auto",
                "spanNulls": false,
                "stacking": {
                  "group": "A",
                  "mode": "none"
                },
                "thresholdsStyle": {
                  "mode": "off"
                }
              },
              "mappings": [],
              "thresholds": {
                "mode": "absolute",
                "steps": [
                  {
                    "color": "green",
                    "value": null
                  },
                  {
                    "color": "red",
                    "value": 80
                  }
                ]
              },
              "unit": "s"
            },
            "overrides":[]
          },
          "gridPos": {
            "h": 8,
            "w": 12,
            "x": 0,
            "y": 0
          },
          "id": 9,
          "options": {
            "legend": {
              "calcs": [],
              "displayMode": "list",
              "placement": "bottom",
              "showLegend": true
            },
            "tooltip": {
              "mode": "single",
              "sort": "none"
            }
          },
          "targets": [
            {
              "datasource": {
                "type": "prometheus",
                "uid": "${DS_PROMETHEUS}"
              },
              "disableTextWrap": false,
              "editorMode": "builder",
              "expr": "histogram_quantile(0.99, sum by(le) (rate(vllm:e2e_request_latency_seconds_bucket{model_name=\"$model_name\"}[$__rate_interval])))",
              "fullMetaSearch": false,
              "includeNullMetadata": false,
              "instant": false,
              "legendFormat": "P99",
              "range": true,
              "refId": "A",
              "useBackend": false
            },
            {
              "datasource": {
                "type": "prometheus",
                "uid": "${DS_PROMETHEUS}"
              },
              "disableTextWrap": false,
              "editorMode": "builder",
              "expr": "histogram_quantile(0.95, sum by(le) (rate(vllm:e2e_request_latency_seconds_bucket{model_name=\"$model_name\"}[$__rate_interval])))",
              "fullMetaSearch": false,
              "hide": false,
              "includeNullMetadata": false,
              "instant": false,
              "legendFormat": "P95",
              "range": true,
              "refId": "B",
              "useBackend": false
            },
            {
              "datasource": {
                "type": "prometheus",
                "uid": "${DS_PROMETHEUS}"
              },
              "disableTextWrap": false,
              "editorMode": "builder",
              "expr": "histogram_quantile(0.9, sum by(le) (rate(vllm:e2e_request_latency_seconds_bucket{model_name=\"$model_name\"}[$__rate_interval])))",
              "fullMetaSearch": false,
              "hide": false,
              "includeNullMetadata": false,
              "instant": false,
              "legendFormat": "P90",
              "range": true,
              "refId": "C",
              "useBackend": false
            },
            {
              "datasource": {
                "type": "prometheus",
                "uid": "${DS_PROMETHEUS}"
              },
              "disableTextWrap": false,
              "editorMode": "builder",
              "expr": "histogram_quantile(0.5, sum by(le) (rate(vllm:e2e_request_latency_seconds_bucket{model_name=\"$model_name\"}[$__rate_interval])))",
              "fullMetaSearch": false,
              "hide": false,
              "includeNullMetadata": false,
              "instant": false,
              "legendFormat": "P50",
              "range": true,
              "refId": "D",
              "useBackend": false
            },
            {
              "datasource": {
                "type": "prometheus",
                "uid": "${DS_PROMETHEUS}"
              },
              "editorMode": "code",
              "expr": "rate(vllm:e2e_request_latency_seconds_sum{model_name=\"$model_name\"}[$__rate_interval])\n/\nrate(vllm:e2e_request_latency_seconds_count{model_name=\"$model_name\"}[$__rate_interval])",
              "hide": false,
              "instant": false,
              "legendFormat": "Average",
              "range": true,
              "refId": "E"
            }
          ],
          "title": "Latensi Permintaan End-to-End",
          "type": "timeseries"
        },
        {
          "datasource": {
            "type": "prometheus",
            "uid": "${DS_PROMETHEUS}"
          },
          "description": "Jumlah token yang diproses per detik",
          "fieldConfig": {
            "defaults": {
              "color": {
                "mode": "palette-classic"
              },
              "custom": {
                "axisBorderShow": false,
                "axisCenteredZero": false,
                "axisColorMode": "text",
                "axisLabel": "",
                "axisPlacement": "auto",
                "barAlignment": 0,
                "barWidthFactor": 0.6,
                "drawStyle": "line",
                "fillOpacity": 0,
                "gradientMode": "none",
                "hideFrom": {
                  "legend": false,
                  "tooltip": false,
                  "viz": false
                },
                "insertNulls": false,
                "lineInterpolation": "linear",
                "lineWidth": 1,
                "pointSize": 5,
                "scaleDistribution": {
                  "type": "linear"
                },
                "showPoints": "auto",
                "spanNulls": false,
                "stacking": {
                  "group": "A",
                  "mode": "none"
                },
                "thresholdsStyle": {
                  "mode": "off"
                }
              },
              "mappings": [],
              "thresholds": {
                "mode": "absolute",
                "steps": [
                  {
                    "color": "green",
                    "value": null
                  },
                  {
                    "color": "red",
                    "value": 80
                  }
                ]
              }
            },
            "overrides": []
          },
          "gridPos": {
            "h": 8,
            "w": 12,
            "x": 12,
            "y": 0
          },
          "id": 8,
          "options": {
            "legend": {
              "calcs": [],
              "displayMode": "list",
              "placement": "bottom",
              "showLegend": true
            },
            "tooltip": {
              "mode": "single",
              "sort": "none"
            }
          },
          "targets": [
            {
              "datasource": {
                "type": "prometheus",
                "uid": "${DS_PROMETHEUS}"
              },
              "disableTextWrap": false,
              "editorMode": "builder",
              "expr": "rate(vllm:prompt_tokens_total{model_name=\"$model_name\"}[$__rate_interval])",
              "fullMetaSearch": false,
              "includeNullMetadata": false,
              "instant": false,
              "legendFormat": "Prompt Tokens/Sec",
              "range": true,
              "refId": "A",
              "useBackend": false
            },
            {
              "datasource": {
                "type": "prometheus",
                "uid": "${DS_PROMETHEUS}"
              },
              "disableTextWrap": false,
              "editorMode": "builder",
              "expr": "rate(vllm:generation_tokens_total{model_name=\"$model_name\"}[$__rate_interval])",
              "fullMetaSearch": false,
              "hide": false,
              "includeNullMetadata": false,
              "instant": false,
              "legendFormat": "Generation Tokens/Sec",
              "range": true,
              "refId": "B",
              "useBackend": false
            }
          ],
          "title": "Throughput Token",
          "type": "timeseries"
        },
        {
          "datasource": {
            "type": "prometheus",
            "uid": "${DS_PROMETHEUS}"
          },
          "description": "Latensi antar token dalam detik.",
          "fieldConfig": {
            "defaults": {
              "color": {
                "mode": "palette-classic"
              },
              "custom": {
                "axisBorderShow": false,
                "axisCenteredZero": false,
                "axisColorMode": "text",
                "axisLabel": "",
                "axisPlacement": "auto",
                "barAlignment": 0,
                "barWidthFactor": 0.6,
                "drawStyle": "line",
                "fillOpacity": 0,
                "gradientMode": "none",
                "hideFrom": {
                  "legend": false,
                  "tooltip": false,
                  "viz": false
                },
                "insertNulls": false,
                "lineInterpolation": "linear",
                "lineWidth": 1,
                "pointSize": 5,
                "scaleDistribution": {
                  "type": "linear"
                },
                "showPoints": "auto",
                "spanNulls": false,
                "stacking": {
                  "group": "A",
                  "mode": "none"
                },
                "thresholdsStyle": {
                  "mode": "off"
                }
              },
              "mappings": [],
              "thresholds": {
                "mode": "absolute",
                "steps": [
                  {
                    "color": "green",
                    "value": null
                  },
                  {
                    "color": "red",
                    "value": 80
                  }
                ]
              },
              "unit": "s"
            },
            "overrides": []
          },
          "gridPos": {
            "h": 8,
            "w": 12,
            "x": 0,
            "y": 8
          },
          "id": 10,
          "options": {
            "legend": {
              "calcs": [],
              "displayMode": "list",
              "placement": "bottom",
              "showLegend": true
            },
            "tooltip": {
              "mode": "single",
              "sort": "none"
            }
          },
          "targets": [
            {
              "datasource": {
                "type": "prometheus",
                "uid": "${DS_PROMETHEUS}"
              },
              "disableTextWrap": false,
              "editorMode": "builder",
              "expr": "histogram_quantile(0.99, sum by(le) (rate(vllm:time_per_output_token_seconds_bucket{model_name=\"$model_name\"}[$__rate_interval])))",
              "fullMetaSearch": false,
              "includeNullMetadata": false,
              "instant": false,
              "legendFormat": "P99",
              "range": true,
              "refId": "A",
              "useBackend": false
            },
            {
              "datasource": {
                "type": "prometheus",
                "uid": "${DS_PROMETHEUS}"
              },
              "disableTextWrap": false,
              "editorMode": "builder",
              "expr": "histogram_quantile(0.95, sum by(le) (rate(vllm:time_per_output_token_seconds_bucket{model_name=\"$model_name\"}[$__rate_interval])))",
              "fullMetaSearch": false,
              "hide": false,
              "includeNullMetadata": false,
              "instant": false,
              "legendFormat": "P95",
              "range": true,
              "refId": "B",
              "useBackend": false
            },
            {
              "datasource": {
                "type": "prometheus",
                "uid": "${DS_PROMETHEUS}"
              },
              "disableTextWrap": false,
              "editorMode": "builder",
              "expr": "histogram_quantile(0.9, sum by(le) (rate(vllm:time_per_output_token_seconds_bucket{model_name=\"$model_name\"}[$__rate_interval])))",
              "fullMetaSearch": false,
              "hide": false,
              "includeNullMetadata": false,
              "instant": false,
              "legendFormat": "P90",
              "range": true,
              "refId": "C",
              "useBackend": false
            },
            {
              "datasource": {
                "type": "prometheus",
                "uid": "${DS_PROMETHEUS}"
              },
              "disableTextWrap": false,
              "editorMode": "builder",
              "expr": "histogram_quantile(0.5, sum by(le) (rate(vllm:time_per_output_token_seconds_bucket{model_name=\"$model_name\"}[$__rate_interval])))",
              "fullMetaSearch": false,
              "hide": false,
              "includeNullMetadata": false,
              "instant": false,
              "legendFormat": "P50",
              "range": true,
              "refId": "D",
              "useBackend": false
            },
            {
              "datasource": {
                "type": "prometheus",
                "uid": "${DS_PROMETHEUS}"
              },
              "editorMode": "code",
              "expr": "rate(vllm:time_per_output_token_seconds_sum{model_name=\"$model_name\"}[$__rate_interval])\n/\nrate(vllm:time_per_output_token_seconds_count{model_name=\"$model_name\"}[$__rate_interval])",
              "hide": false,
              "instant": false,
              "legendFormat": "Mean",
              "range": true,
              "refId": "E"
            }
          ],
          "title": "Latensi Per Token Output",
          "type": "timeseries"
        },
        {
          "datasource": {
            "type": "prometheus",
            "uid": "${DS_PROMETHEUS}"
          },
          "description": "Jumlah permintaan dalam status RUNNING, WAITING, dan SWAPPED",
          "fieldConfig": {
            "defaults": {
              "color": {
                "mode": "palette-classic"
              },
              "custom": {
                "axisBorderShow": false,
                "axisCenteredZero": false,
                "axisColorMode": "text",
                "axisLabel": "",
                "axisPlacement": "auto",
                "barAlignment": 0,
                "barWidthFactor": 0.6,
                "drawStyle": "line",
                "fillOpacity": 0,
                "gradientMode": "none",
                "hideFrom": {
                  "legend": false,
                  "tooltip": false,
                  "viz": false
                },
                "insertNulls": false,
                "lineInterpolation": "linear",
                "lineWidth": 1,
                "pointSize": 5,
                "scaleDistribution": {
                  "type": "linear"
                },
                "showPoints": "auto",
                "spanNulls": false,
                "stacking": {
                  "group": "A",
                  "mode": "none"
                },
                "thresholdsStyle": {
                  "mode": "off"
                }
              },
              "mappings": [],
              "thresholds": {
                "mode": "absolute",
                "steps": [
                  {
                    "color": "green",
                    "value": null
                  },
                  {
                    "color": "red",
                    "value": 80
                  }
                ]
              },
              "unit": "none"
            },
            "overrides": []
          },
          "gridPos": {
            "h": 8,
            "w": 12,
            "x": 12,
            "y": 8
          },
          "id": 3,
          "options": {
            "legend": {
              "calcs": [],
              "displayMode": "list",
              "placement": "bottom",
              "showLegend": true
            },
            "tooltip": {
              "mode": "single",
              "sort": "none"
            }
          },
          "targets": [
            {
              "datasource": {
                "type": "prometheus",
                "uid": "${DS_PROMETHEUS}"
              },
              "disableTextWrap": false,
              "editorMode": "builder",
              "expr": "vllm:num_requests_running{model_name=\"$model_name\"}",
              "fullMetaSearch": false,
              "includeNullMetadata": true,
              "instant": false,
              "legendFormat": "Num Running",
              "range": true,
              "refId": "A",
              "useBackend": false
            },
            {
              "datasource": {
                "type": "prometheus",
                "uid": "${DS_PROMETHEUS}"
              },
              "disableTextWrap": false,
              "editorMode": "builder",
              "expr": "vllm:num_requests_swapped{model_name=\"$model_name\"}",
              "fullMetaSearch": false,
              "hide": false,
              "includeNullMetadata": true,
              "instant": false,
              "legendFormat": "Num Swapped",
              "range": true,
              "refId": "B",
              "useBackend": false
            },
            {
              "datasource": {
                "type": "prometheus",
                "uid": "${DS_PROMETHEUS}"
              },
              "disableTextWrap": false,
              "editorMode": "builder",
              "expr": "vllm:num_requests_waiting{model_name=\"$model_name\"}",
              "fullMetaSearch": false,
              "hide": false,
              "includeNullMetadata": true,
              "instant": false,
              "legendFormat": "Num Waiting",
              "range": true,
              "refId": "C",
              "useBackend": false
            }
          ],
          "title": "Status Penjadwal",
          "type": "timeseries"
        },
        {
          "datasource": {
            "type": "prometheus",
            "uid": "${DS_PROMETHEUS}"
          },
          "description": "Latensi TTFT P50, P90, P95, dan P99 dalam detik.",
          "fieldConfig": {
            "defaults": {
              "color": {
                "mode": "palette-classic"
              },
              "custom": {
                "axisBorderShow": false,
                "axisCenteredZero": false,
                "axisColorMode": "text",
                "axisLabel": "",
                "axisPlacement": "auto",
                "barAlignment": 0,
                "barWidthFactor": 0.6,
                "drawStyle": "line",
                "fillOpacity": 0,
                "gradientMode": "none",
                "hideFrom": {
                  "legend": false,
                  "tooltip": false,
                  "viz": false
                },
                "insertNulls": false,
                "lineInterpolation": "linear",
                "lineWidth": 1,
                "pointSize": 5,
                "scaleDistribution": {
                  "type": "linear"
                },
                "showPoints": "auto",
                "spanNulls": false,
                "stacking": {
                  "group": "A",
                  "mode": "none"
                },
                "thresholdsStyle": {
                  "mode": "off"
                }
              },
              "mappings": [],
              "thresholds": {
                "mode": "absolute",
                "steps": [
                  {
                    "color": "green",
                    "value": null
                  },
                  {
                    "color": "red",
                    "value": 80
                  }
                ]
              },
              "unit": "s"
            },
            "overrides": []
          },
          "gridPos": {
            "h": 8,
            "w": 12,
            "x": 0,
            "y": 16
          },
          "id": 5,
          "options": {
            "legend": {
              "calcs": [],
              "displayMode": "list",
              "placement": "bottom",
              "showLegend": true
            },
            "tooltip": {
              "mode": "single",
              "sort": "none"
            }
          },
          "targets": [
            {
              "datasource": {
                "type": "prometheus",
                "uid": "${DS_PROMETHEUS}"
              },
              "disableTextWrap": false,
              "editorMode": "builder",
              "expr": "histogram_quantile(0.99, sum by(le) (rate(vllm:time_to_first_token_seconds_bucket{model_name=\"$model_name\"}[$__rate_interval])))",
              "fullMetaSearch": false,
              "hide": false,
              "includeNullMetadata": false,
              "instant": false,
              "legendFormat": "P99",
              "range": true,
              "refId": "A",
              "useBackend": false
            },
            {
              "datasource": {
                "type": "prometheus",
                "uid": "${DS_PROMETHEUS}"
              },
              "disableTextWrap": false,
              "editorMode": "builder",
              "expr": "histogram_quantile(0.95, sum by(le) (rate(vllm:time_to_first_token_seconds_bucket{model_name=\"$model_name\"}[$__rate_interval])))",
              "fullMetaSearch": false,
              "includeNullMetadata": false,
              "instant": false,
              "legendFormat": "P95",
              "range": true,
              "refId": "B",
              "useBackend": false
            },
            {
              "datasource": {
                "type": "prometheus",
                "uid": "${DS_PROMETHEUS}"
              },
              "disableTextWrap": false,
              "editorMode": "builder",
              "expr": "histogram_quantile(0.9, sum by(le) (rate(vllm:time_to_first_token_seconds_bucket{model_name=\"$model_name\"}[$__rate_interval])))",
              "fullMetaSearch": false,
              "hide": false,
              "includeNullMetadata": false,
              "instant": false,
              "legendFormat": "P90",
              "range": true,
              "refId": "C",
              "useBackend": false
            },
            {
              "datasource": {
                "type": "prometheus",
                "uid": "${DS_PROMETHEUS}"
              },
              "disableTextWrap": false,
              "editorMode": "builder",
              "expr": "histogram_quantile(0.5, sum by(le) (rate(vllm:time_to_first_token_seconds_bucket{model_name=\"$model_name\"}[$__rate_interval])))",
              "fullMetaSearch": false,
              "hide": false,
              "includeNullMetadata": false,
              "instant": false,
              "legendFormat": "P50",
              "range": true,
              "refId": "D",
              "useBackend": false
            },
            {
              "datasource": {
                "type": "prometheus",
                "uid": "${DS_PROMETHEUS}"
              },
              "editorMode": "code",
              "expr": "rate(vllm:time_to_first_token_seconds_sum{model_name=\"$model_name\"}[$__rate_interval])\n/\nrate(vllm:time_to_first_token_seconds_count{model_name=\"$model_name\"}[$__rate_interval])",
              "hide": false,
              "instant": false,
              "legendFormat": "Average",
              "range": true,
              "refId": "E"
            }
          ],
          "title": "Latensi Waktu ke Token Pertama",
          "type": "timeseries"
        },
        {
          "datasource": {
            "type": "prometheus",
            "uid": "${DS_PROMETHEUS}"
          },
          "description": "Persentase blok cache yang digunakan oleh vLLM.",
          "fieldConfig": {
            "defaults": {
              "color": {
                "mode": "palette-classic"
              },
              "custom": {
                "axisBorderShow": false,
                "axisCenteredZero": false,
                "axisColorMode": "text",
                "axisLabel": "",
                "axisPlacement": "auto",
                "barAlignment": 0,
                "barWidthFactor": 0.6,
                "drawStyle": "line",
                "fillOpacity": 0,
                "gradientMode": "none",
                "hideFrom": {
                  "legend": false,
                  "tooltip": false,
                  "viz": false
                },
                "insertNulls": false,
                "lineInterpolation": "linear",
                "lineWidth": 1,
                "pointSize": 5,
                "scaleDistribution": {
                  "type": "linear"
                },
                "showPoints": "auto",
                "spanNulls": false,
                "stacking": {
                  "group": "A",
                  "mode": "none"
                },
                "thresholdsStyle": {
                  "mode": "off"
                }
              },
              "mappings": [],
              "thresholds": {
                "mode": "absolute",
                "steps": [
                  {
                    "color": "green",
                    "value": null
                  },
                  {
                    "color": "red",
                    "value": 80
                  }
                ]
              },
              "unit": "percentunit"
            },
            "overrides": []
          },
          "gridPos": {
            "h": 8,
            "w": 12,
            "x": 12,
            "y": 16
          },
          "id": 4,
          "options": {
            "legend": {
              "calcs": [],
              "displayMode": "list",
              "placement": "bottom",
              "showLegend": true
            },
            "tooltip": {
              "mode": "single",
              "sort": "none"
            }
          },
          "targets": [
            {
              "datasource": {
                "type": "prometheus",
                "uid": "${DS_PROMETHEUS}"
              },
              "editorMode": "code",
              "expr": "vllm:gpu_cache_usage_perc{model_name=\"$model_name\"}",
              "instant": false,
              "legendFormat": "GPU Cache Usage({{ kubernetes_pod_name }})",
              "range": true,
              "refId": "A"
            },
            {
              "datasource": {
                "type": "prometheus",
                "uid": "${DS_PROMETHEUS}"
              },
              "editorMode": "code",
              "expr": "vllm:cpu_cache_usage_perc{model_name=\"$model_name\"}",
              "hide": false,
              "instant": false,
              "legendFormat": "CPU Cache Usage({{ kubernetes_pod_name }})",
              "range": true,
              "refId": "B"
            }
          ],
          "title": "Utilisasi Cache",
          "type": "timeseries"
        },
        {
          "datasource": {
            "type": "prometheus",
            "uid": "${DS_PROMETHEUS}"
          },
          "description": "Heatmap panjang prompt permintaan",
          "fieldConfig": {
            "defaults": {
              "custom": {
                "hideFrom": {
                  "legend": false,
                  "tooltip": false,
                  "viz": false
                },
                "scaleDistribution": {
                  "type": "linear"
                }
              }
            },
            "overrides": []
          },
          "gridPos": {
            "h": 8,
            "w": 12,
            "x": 0,
            "y": 24
          },
          "id": 12,
          "options": {
            "calculate": false,
            "cellGap": 1,
            "cellValues": {
              "unit": "none"
            },
            "color": {
              "exponent": 0.5,
              "fill": "dark-orange",
              "min": 0,
              "mode": "scheme",
              "reverse": false,
              "scale": "exponential",
              "scheme": "Spectral",
              "steps": 64
            },
            "exemplars": {
              "color": "rgba(255,0,255,0.7)"
            },
            "filterValues": {
              "le": 1e-9
            },
            "legend": {
              "show": true
            },
            "rowsFrame": {
              "layout": "auto",
              "value": "Request count"
            },
            "tooltip": {
              "mode": "single",
              "showColorScale": false,
              "yHistogram": true
            },
            "yAxis": {
              "axisLabel": "Panjang Prompt",
              "axisPlacement": "left",
              "reverse": false,
              "unit": "none"
            }
          },
          "pluginVersion": "11.2.0",
          "targets": [
            {
              "datasource": {
                "type": "prometheus",
                "uid": "${DS_PROMETHEUS}"
              },
              "disableTextWrap": false,
              "editorMode": "builder",
              "expr": "sum by(le) (increase(vllm:request_prompt_tokens_bucket{model_name=\"$model_name\"}[$__rate_interval]))",
              "format": "heatmap",
              "fullMetaSearch": false,
              "includeNullMetadata": true,
              "instant": false,
              "legendFormat": "{{le}}",
              "range": true,
              "refId": "A",
              "useBackend": false
            }
          ],
          "title": "Panjang Prompt Permintaan",
          "type": "heatmap"
        },
        {
          "datasource": {
            "type": "prometheus",
            "uid": "${DS_PROMETHEUS}"
          },
          "description": "Heatmap panjang generasi permintaan",
          "fieldConfig": {
            "defaults": {
              "custom": {
                "hideFrom": {
                  "legend": false,
                  "tooltip": false,
                  "viz": false
                },
                "scaleDistribution": {
                  "type": "linear"
                }
              }
            },
            "overrides": []
          },
          "gridPos": {
            "h": 8,
            "w": 12,
            "x": 12,
            "y": 24
          },
          "id": 13,
          "options": {
            "calculate": false,
            "cellGap": 1,
            "cellValues": {
              "unit": "none"
            },
            "color": {
              "exponent": 0.5,
              "fill": "dark-orange",
              "min": 0,
              "mode": "scheme",
              "reverse": false,
              "scale": "exponential",
              "scheme": "Spectral",
              "steps": 64
            },
            "exemplars": {
              "color": "rgba(255,0,255,0.7)"
            },
            "filterValues": {
              "le": 1e-9
            },
            "legend": {
              "show": true
            },
            "rowsFrame": {
              "layout": "auto",
              "value": "Request count"
            },
            "tooltip": {
              "mode": "single",
              "showColorScale": false,
              "yHistogram": true
            },
            "yAxis": {
              "axisLabel": "Panjang Generasi",
              "axisPlacement": "left",
              "reverse": false,
              "unit": "none"
            }
          },
          "pluginVersion": "11.2.0",
          "targets": [
            {
              "datasource": {
                "type": "prometheus",
                "uid": "${DS_PROMETHEUS}"
              },
              "disableTextWrap": false,
              "editorMode": "builder",
              "expr": "sum by(le) (increase(vllm:request_generation_tokens_bucket{model_name=\"$model_name\"}[$__rate_interval]))",
              "format": "heatmap",
              "fullMetaSearch": false,
              "includeNullMetadata": true,
              "instant": false,
              "legendFormat": "{{le}}",
              "range": true,
              "refId": "A",
              "useBackend": false
            }
          ],
          "title": "Panjang Generasi Permintaan",
          "type": "heatmap"
        },
        {
          "datasource": {
            "type": "prometheus",
            "uid": "${DS_PROMETHEUS}"
          },
          "description": "Jumlah permintaan selesai berdasarkan alasan penyelesaian mereka: baik token EOS dihasilkan atau panjang urutan maksimum tercapai.",
          "fieldConfig": {
            "defaults": {
              "color": {
                "mode": "palette-classic"
              },
              "custom": {
                "axisBorderShow": false,
                "axisCenteredZero": false,
                "axisColorMode": "text",
                "axisLabel": "",
                "axisPlacement": "auto",
                "barAlignment": 0,
                "barWidthFactor": 0.6,
                "drawStyle": "line",
                "fillOpacity": 0,
                "gradientMode": "none",
                "hideFrom": {
                  "legend": false,
                  "tooltip": false,
                  "viz": false
                },
                "insertNulls": false,
                "lineInterpolation": "linear",
                "lineWidth": 1,
                "pointSize": 5,
                "scaleDistribution": {
                  "type": "linear"
                },
                "showPoints": "auto",
                "spanNulls": false,
                "stacking": {
                  "group": "A",
                  "mode": "none"
                },
                "thresholdsStyle": {
                  "mode": "off"
                }
              },
              "mappings": [],
              "thresholds": {
                "mode": "absolute",
                "steps": [
                  {
                    "color": "green"
                  },
                  {
                    "color": "red",
                    "value": 80
                  }
                ]
              }
            },
            "overrides": []
          },
          "gridPos": {
            "h": 8,
            "w": 12,
            "x": 0,
            "y": 32
          },
          "id": 11,
          "options": {
            "legend": {
              "calcs": [],
              "displayMode": "list",
              "placement": "bottom",
              "showLegend": true
            },
            "tooltip": {
              "mode": "single",
              "sort": "none"
            }
          },
          "targets": [
            {
              "datasource": {
                "type": "prometheus",
                "uid": "${DS_PROMETHEUS}"
              },
              "disableTextWrap": false,
              "editorMode": "builder",
              "expr": "sum by(finished_reason) (increase(vllm:request_success_total{model_name=\"$model_name\"}[$__rate_interval]))",
              "fullMetaSearch": false,
              "includeNullMetadata": true,
              "instant": false,
              "interval": "",
              "legendFormat": "__auto",
              "range": true,
              "refId": "A",
              "useBackend": false
            }
          ],
          "title": "Alasan Penyelesaian",
          "type": "timeseries"
        },
        {
          "datasource": {
            "default": false,
            "type": "prometheus",
            "uid": "${DS_PROMETHEUS}"
          },
          "fieldConfig": {
            "defaults": {
              "color": {
                "mode": "palette-classic"
              },
              "custom": {
                "axisBorderShow": false,
                "axisCenteredZero": false,
                "axisColorMode": "text",
                "axisLabel": "seconds",
                "axisPlacement": "auto",
                "barAlignment": 0,
                "barWidthFactor": 0.6,
                "drawStyle": "line",
                "fillOpacity": 0,
                "gradientMode": "none",
                "hideFrom": {
                  "legend": false,
                  "tooltip": false,
                  "viz": false
                },
                "insertNulls": false,
                "lineInterpolation": "linear",
                "lineWidth": 1,
                "pointSize": 5,
                "scaleDistribution": {
                  "type": "linear"
                },
                "showPoints": "auto",
                "spanNulls": false,
                "stacking": {
                  "group": "A",
                  "mode": "none"
                },
                "thresholdsStyle": {
                  "mode": "off"
                }
              },
              "mappings": [],
              "thresholds": {
                "mode": "absolute",
                "steps": [
                  {
                    "color": "green"
                  },
                  {
                    "color": "red",
                    "value": 80
                  }
                ]
              }
            },
            "overrides": []
          },
          "gridPos": {
            "h": 8,
            "w": 12,
            "x": 12,
            "y": 32
          },
          "id": 14,
          "options": {
            "legend": {
              "calcs": [],
              "displayMode": "list",
              "placement": "bottom",
              "showLegend": true
            },
            "tooltip": {
              "mode": "single",
              "sort": "none"
            }
          },
          "targets": [
            {
              "datasource": {
                "type": "prometheus",
                "uid": "${DS_PROMETHEUS}"
              },
              "disableTextWrap": false,
              "editorMode": "code",
              "expr": "rate(vllm:request_queue_time_seconds_sum{model_name=\"$model_name\"}[$__rate_interval])",
              "fullMetaSearch": false,
              "includeNullMetadata": true,
              "instant": false,
              "legendFormat": "{{kubernetes_pod_name}}",
              "range": true,
              "refId": "A",
              "useBackend": false
            }
          ],
          "title": "Waktu Antrian",
          "type": "timeseries"
        },
        {
          "datasource": {
            "default": false,
            "type": "prometheus",
            "uid": "${DS_PROMETHEUS      },
          "fieldConfig": {
            "defaults": {
              "color": {
                "mode": "palette-classic"
              },
              "custom": {
                "axisBorderShow": false,
                "axisCenteredZero": false,
                "axisColorMode": "text",
                "axisLabel": "",
                "axisPlacement": "auto",
                "barAlignment": 0,
                "barWidthFactor": 0.6,
                "drawStyle": "line",
                "fillOpacity": 0,
                "gradientMode": "none",
                "hideFrom": {
                  "legend": false,
                  "tooltip": false,
                  "viz": false
                },
                "insertNulls": false,
                "lineInterpolation": "linear",
                "lineWidth": 1,
                "pointSize": 5,
                "scaleDistribution": {
                  "type": "linear"
                },
                "showPoints": "auto",
                "spanNulls": false,
                "stacking": {
                  "group": "A",
                  "mode": "none"
                },
                "thresholdsStyle": {
                  "mode": "off"
                }
              },
              "mappings": [],
              "thresholds": {
                "mode": "absolute",
                "steps": [
                  {
                    "color": "green"
                  },
                  {
                    "color": "red",
                    "value": 80
                  }
                ]
              }
            },
            "overrides": []
          },
          "gridPos": {
            "h": 8,
            "w": 12,
            "x": 0,
            "y": 40
          },
          "id": 15,
          "options": {
            "legend": {
              "calcs": [],
              "displayMode": "list",
              "placement": "bottom",
              "showLegend": true
            },
            "tooltip": {
              "mode": "single",
              "sort": "none"
            }
          },
          "targets": [
            {
              "datasource": {
                "type": "prometheus",
                "uid": "${DS_PROMETHEUS}"
              },
              "disableTextWrap": false,
              "editorMode": "code",
              "expr": "rate(vllm:request_prefill_time_seconds_sum{model_name=\"$model_name\"}[$__rate_interval])",
              "fullMetaSearch": false,
              "includeNullMetadata": true,
              "instant": false,
              "legendFormat": "Prefill",
              "range": true,
              "refId": "A",
              "useBackend": false
            },
            {
              "datasource": {
                "type": "prometheus",
                "uid": "${DS_PROMETHEUS}"
              },
              "editorMode": "code",
              "expr": "rate(vllm:request_decode_time_seconds_sum{model_name=\"$model_name\"}[$__rate_interval])",
              "hide": false,
              "instant": false,
              "legendFormat": "Decode",
              "range": true,
              "refId": "B"
            }
          ],
          "title": "Waktu Prefill dan Decode Permintaan",
          "type": "timeseries"
        },
        {
          "datasource": {
            "default": false,
            "type": "prometheus",
            "uid": "${DS_PROMETHEUS}"
          },
          "fieldConfig": {
            "defaults": {
              "color": {
                "mode": "palette-classic"
              },
              "custom": {
                "axisBorderShow": false,
                "axisCenteredZero": false,
                "axisColorMode": "text",
                "axisLabel": "",
                "axisPlacement": "auto",
                "barAlignment": 0,
                "barWidthFactor": 0.6,
                "drawStyle": "line",
                "fillOpacity": 0,
                "gradientMode": "none",
                "hideFrom": {
                  "legend": false,
                  "tooltip": false,
                  "viz": false
                },
                "insertNulls": false,
                "lineInterpolation": "linear",
                "lineWidth": 1,
                "pointSize": 5,
                "scaleDistribution": {
                  "type": "linear"
                },
                "showPoints": "auto",
                "spanNulls": false,
                "stacking": {
                  "group": "A",
                  "mode": "none"
                },
                "thresholdsStyle": {
                  "mode": "off"
                }
              },
              "mappings": [],
              "thresholds": {
                "mode": "absolute",
                "steps": [
                  {
                    "color": "green"
                  },
                  {
                    "color": "red",
                    "value": 80
                  }
                ]
              }
            },
            "overrides": []
          },
          "gridPos": {
            "h": 8,
            "w": 12,
            "x": 12,
            "y": 40
          },
          "id": 16,
          "options": {
            "legend": {
              "calcs": [],
              "displayMode": "list",
              "placement": "bottom",
              "showLegend": true
            },
            "tooltip": {
              "mode": "single",
              "sort": "none"
            }
          },
          "targets": [
            {
              "datasource": {
                "type": "prometheus",
                "uid": "${DS_PROMETHEUS}"
              },
              "disableTextWrap": false,
              "editorMode": "code",
              "expr": "rate(vllm:request_max_num_generation_tokens_sum{model_name=\"$model_name\"}[$__rate_interval])",
              "fullMetaSearch": false,
              "includeNullMetadata": true,
              "instant": false,
              "legendFormat": "Tokens",
              "range": true,
              "refId": "A",
              "useBackend": false
            }
          ],
          "title": "Token Generasi Maksimum dalam Grup Urutan",
          "type": "timeseries"
        }
      ],
      "refresh": "",
      "schemaVersion": 39,
      "tags": [],
      "templating": {
        "list": [
          {
            "current": {
              "selected": false,
              "text": "prometheus",
              "value": "edx8memhpd9tsa"
            },
            "hide": 0,
            "includeAll": false,
            "label": "datasource",
            "multi": false,
            "name": "DS_PROMETHEUS",
            "options": [],
            "query": "prometheus",
            "queryValue": "",
            "refresh": 1,
            "regex": "",
            "skipUrlSync": false,
            "type": "datasource"
          },
          {
            "current": {
              "selected": false,
              "text": "/share/datasets/public_models/Meta-Llama-3-8B-Instruct",
              "value": "/share/datasets/public_models/Meta-Llama-3-8B-Instruct"
            },
            "datasource": {
              "type": "prometheus",
              "uid": "${DS_PROMETHEUS}"
            },
            "definition": "label_values(model_name)",
            "hide": 0,
            "includeAll": false,
            "label": "model_name",
            "multi": false,
            "name": "model_name",
            "options": [],
            "query": {
              "query": "label_values(model_name)",
              "refId": "StandardVariableQuery"
            },
            "refresh": 1,
            "regex": "",
            "skipUrlSync": false,
            "sort": 0,
            "type": "query"
          }
        ]
      },
      "time": {
        "from": "now-5m",
        "to": "now"
      },
      "timepicker": {},
      "timezone": "",
      "title": "vLLM"
    }

    Pratinjau:

    image

  3. Untuk kluster ACK, gunakan benchmark vllm untuk melakukan pengujian stres pada layanan inferensi dan membandingkan kemampuan penyeimbangan beban dari perutean HTTP standar dan perutean ekstensi inferensi.

    1. Terapkan beban kerja pengujian stres.

      kubectl apply -f- <<EOF
      apiVersion: apps/v1
      kind: Deployment
      metadata:
        labels:
          app: vllm-benchmark
        name: vllm-benchmark
        namespace: default
      spec:
        progressDeadlineSeconds: 600
        replicas: 1
        revisionHistoryLimit: 10
        selector:
          matchLabels:
            app: vllm-benchmark
        strategy:
          rollingUpdate:
            maxSurge: 25%
            maxUnavailable: 25%
          type: RollingUpdate
        template:
          metadata:
            creationTimestamp: null
            labels:
              app: vllm-benchmark
          spec:
            containers:
            - command:
              - sh
              - -c
              - sleep inf
              image: registry-cn-hangzhou.ack.aliyuncs.com/dev/llm-benchmark:random-and-qa
              imagePullPolicy: IfNotPresent
              name: vllm-benchmark
              resources: {}
              terminationMessagePath: /dev/termination-log
              terminationMessagePolicy: File
            dnsPolicy: ClusterFirst
            restartPolicy: Always
            schedulerName: default-scheduler
            securityContext: {}
            terminationGracePeriodSeconds: 30
      EOF
    2. Mulai pengujian stres.

      1. Dapatkan alamat IP internal Gateway.

        export GW_IP=$(kubectl get svc -n envoy-gateway-system -l gateway.envoyproxy.io/owning-gateway-namespace=default,gateway.envoyproxy.io/owning-gateway-name=qwen-inference-gateway -o jsonpath='{.items[0].spec.clusterIP}')
      2. Lakukan pengujian stres.

        Perutean HTTP Standar

        kubectl exec -it deploy/vllm-benchmark -- env GW_IP=${GW_IP} python3 /root/vllm/benchmarks/benchmark_serving.py \
        --backend vllm \
        --model /models/DeepSeek-R1-Distill-Qwen-7B \
        --served-model-name /model/qwen \
        --trust-remote-code \
        --dataset-name random \
        --random-prefix-len 10 \
        --random-input-len 1550 \
        --random-output-len 1800 \
        --random-range-ratio 0.2 \
        --num-prompts 3000 \
        --max-concurrency 200 \
        --host $GW_IP \
        --port 8080 \
        --endpoint /v1/completions \
        --save-result \
        2>&1 | tee benchmark_serving.txt

        Perutean Layanan Inferensi

        kubectl exec -it deploy/vllm-benchmark -- env GW_IP=${GW_IP} python3 /root/vllm/benchmarks/benchmark_serving.py \
        --backend vllm \
        --model /models/DeepSeek-R1-Distill-Qwen-7B \
        --served-model-name /model/qwen \
        --trust-remote-code \
        --dataset-name random \
        --random-prefix-len 10 \
        --random-input-len 1550 \
        --random-output-len 1800 \
        --random-range-ratio 0.2 \
        --num-prompts 3000 \
        --max-concurrency 200 \
        --host $GW_IP \
        --port 8081 \
        --endpoint /v1/completions \
        --save-result \
        2>&1 | tee benchmark_serving.txt

    Setelah pengujian, Anda dapat membandingkan kemampuan perutean perutean HTTP standar dan perutean ekstensi layanan inferensi melalui dasbor.

    49c8528de7c25b87093795a1bac152fc

    Seperti yang Anda lihat, distribusi pemanfaatan cache beban kerja menggunakan HTTP Route tidak merata, sedangkan distribusi pemanfaatan cache beban kerja menggunakan LLM Route normal.

Apa yang harus dilakukan selanjutnya

Gateway dengan Ekstensi Inferensi menyediakan berbagai kebijakan penyeimbangan beban untuk memenuhi persyaratan dalam skenario inferensi yang berbeda. Untuk mengonfigurasi kebijakan penyeimbangan beban untuk pod di InferencePool, tambahkan anotasi inference.networking.x-k8s.io/routing-strategy ke konfigurasi InferencePool.

Template YAML contoh berikut menggunakan pemilih app: vllm-app untuk memilih pod layanan inferensi dan menggunakan kebijakan penyeimbangan beban default yang bekerja berdasarkan metrik server inferensi.

apiVersion: inference.networking.x-k8s.io/v1alpha2
kind: InferencePool
metadata:
  name: vllm-app-pool
  annotations:
    inference.networking.x-k8s.io/routing-strategy: "DEFAULT"
spec:
  targetPortNumber: 8000
  selector:
    app: vllm-app
  extensionRef:
    name: inference-gateway-ext-proc

Tabel berikut menjelaskan kebijakan penyeimbangan beban yang disediakan oleh ACK Gateway dengan Ekstensi Inferensi.

Kebijakan

Deskripsi

DEFAULT

Kebijakan penyeimbangan beban default yang bekerja berdasarkan metrik layanan inferensi. Kebijakan ini mengevaluasi status server inferensi berdasarkan metrik multidimensi dan melakukan penyeimbangan beban berdasarkan status yang dievaluasi. Metrik termasuk panjang antrian permintaan dan pemanfaatan cache GPU.

PREFIX_CACHE

Kebijakan penyeimbangan beban pencocokan awalan permintaan. Kebijakan ini mencoba mengirimkan permintaan dengan awalan yang sama ke pod pada server inferensi yang sama. Kebijakan ini cocok untuk skenario di mana banyak permintaan dengan awalan yang sama diterima dan server inferensi memiliki fitur auto prefix caching yang diaktifkan.

Daftar berikut menjelaskan skenario tipikal:

  • Kueri dokumen panjang: Pengguna sering menggunakan metode berbeda untuk menanyakan dokumen panjang yang sama, seperti panduan pengguna perangkat lunak atau laporan tahunan.

  • Percakapan multi-turn: Pengguna berinteraksi dengan program aplikasi beberapa kali dalam percakapan yang sama.