All Products
Search
Document Center

OpenSearch:Text embedding

Last Updated:Nov 05, 2025

The AI Search Open Platform supports calling text embedding services via API. You can use these services to convert text data into dense vector representations, suitable for scenarios such as information retrieval, text classification, and similarity comparison.

Service name

Service ID

Service description

QPS limit for API calls (Alibaba Cloud account and RAM users)

OpenSearch text vectorization service -001

ops-text-embedding-001

  • Supported languages: Multilingual (40+)

  • Maximum input text length: 300

  • Output vector dimension: 1536

50

Note

To apply for higher QPS, submit a ticket.

OpenSearch Text Embedding Service-Chinese-001

ops-text-embedding-zh-001

  • Supported languages: Chinese

  • Maximum input text length: 1024

  • Output vector dimension: 768

OpenSearch Text Embedding Service-English-001

ops-text-embedding-en-001

  • Supported languages: English

  • Maximum input text length: 512

  • Output vector dimension: 768

OpenSearch General Text Embedding Service-002

ops-text-embedding-002

This model offers enhanced language support and improved performance in retrieval tasks compared to the 001 model.

  • Supported languages: Multilingual (100+)

  • Maximum input text length: 8192

  • Output vector dimension: 1024

GTE Text Embedding-Multilingual-Base

ops-gte-sentence-embedding-multilingual-base

  • Supported languages: Multilingual (70+)

  • Maximum input text length: 8192

  • Output vector dimension: 768

Qwen3 Text Embedding-0.6B

ops-qwen3-embedding-0.6b

Qwen3 series multilingual (100+) text embedding service.

  • Maximum input length: 32k

  • Output vector dimension: 1024

  • Parameter count: 0.6B

Prerequisites

  • The authentication information is obtained.

    When you call an AI Search Open Platform service by using an API, you need to authenticate the caller's identity.

  • The service access address is obtained.

    You can call a service over the Internet or a virtual private cloud (VPC). For more information, see Get service registration address.

Request description

General description

  • The maximum request body size must not exceed 8 MB.

Request method

POST

URL

{host}/v3/openapi/workspaces/{workspace_name}/text-embedding/{service_id} 

  • host: The service endpoint, which supports API calls over the Internet and through a VPC. For more information, see Obtain a service endpoint.

  • workspace_name: The name of the workspace, such as 'default'.

  • service_id: The system built-in service ID, such as 'ops-text-embedding-001'.

Request parameters

Header parameters

API-KEY authentication

Parameter

Type

Required

Description

Example value

Content-Type

String

Yes

Request type: application/json

application/json

Authorization

String

Yes

API-Key

Bearer OS-d1**2a

Body parameters

Parameter

Type

Required

Description

Example value

input

Array/String

Yes

The content to be processed. It supports multiple text inputs, with a maximum of 32 per request. The length of each input is model-dependent. Empty strings are not accepted.

["Science and technology are the primary productive forces","opensearch product documentation"]

input_type

String

No

The data type of the input

  • query

  • document, default value

document

Response parameters

Parameter

Type

Description

Example value

request_id

String

The request ID.

B4AB89C8-B135-****-A6F8-2BAB801A2CE4

latency

Float/Int

The request duration in milliseconds.

10

usage

Object

Metering information generated by this call.

"usage": {

"token_count": 3072

}

usage.token_count

Int

The number of tokens.

3072

result.embeddings

List

The output embedding content, an array of results.

[{

"index": 0,

"embedding": [0.003143,0.009750,...,-0.017395]

},

{}]

result.embeddings[].index

Int

The ordinal number corresponding to the input text.

0

result.embeddings[].embedding

List(Float)

The vectorized result.

[0.003143,0.009750,...,-0.017395]

Curl request example

curl -XPOST -H"Content-Type: application/json" 
"http://****-hangzhou.opensearch.aliyuncs.com/v3/openapi/workspaces/default/text-embedding/ops-text-embedding-001" 
-H "Authorization: Bearer your API-KEY" 
-d "{
    \"input\": [
          \"Science and technology are the primary productive forces\", 
          \"opensearch product documentation\"
    ], 
    \"input_type\": \"query\"
}"

Response example

Normal response example

{
    "request_id": "B4AB89C8-B135-****-A6F8-2BAB801A2CE4",
    "latency": 38,
    "usage": {
        "token_count": 3072
    },
    "result": {
        "embeddings": [
            {
                "index": 0,
                "embedding": [
                    -0.02868066355586052,
                    0.022033605724573135,
                    -0.0417383536696434,
                    -0.044081952422857285,
                    0.02141784131526947,
                    -8.240503375418484E-4,
                    -0.01309406291693449,
                    -0.02169642224907875,
                    -0.03996409475803375,
                    0.008053945377469063,
                    ...
                    -0.05131729692220688,
                    -0.016595875844359398
                ]
            }
        ]
    }
}

Abnormal response example

If the request encounters an error, the response will detail the cause with a specific code and message.

{
    "request_id": "651B3087-8A07-****-B931-9C4E7B60F52D",
    "latency": 0,
    "code": "InvalidParameter",
    "message": "JSON parse error: Cannot deserialize value of type `InputType` from String \"xxx\""
}

Status code description

For more information, see Status codes.