全部产品
Search
文档中心

云原生数据仓库AnalyticDB MySQL版:通过EXPLAIN和EXPLAIN ANALYZE分析执行计划

更新时间:Apr 23, 2024

本文介绍如何使用EXPLAINEXPLAIN ANALYZE命令来分析查询执行计划。

前提条件

AnalyticDB MySQL版集群需为3.1.3或以上版本。

说明

如何查看集群版本,请参见查看版本。如需升级版本,请提交工单联系技术支持。

EXPLAIN

您可以通过EXPLAIN命令来评估查询语句的执行方式,评估结果仅供参考,并不等于实际的执行结果。

  • 语法

    EXPLAIN (format text) <SELECT statement>;
    说明

    如果查询SQL不复杂,您可以在EXPLAIN命令中加上(format text),来提高返回结果中计划树层次结构的易读性。

  • 示例

    EXPLAIN (format text)
          SELECT count(*)
          FROM
          nation, region, customer
          WHERE
          c_nationkey = n_nationkey
          AND n_regionkey = r_regionkey
          AND r_name = 'ASIA';

    返回结果如下:

    Output[count(*)]
    │   Outputs: [count:bigint]
    │   Estimates: {rows: 1 (8B)}
    │   count(*) := count
    └─ Aggregate(FINAL)
       │   Outputs: [count:bigint]
       │   Estimates: {rows: 1 (8B)}
       │   count := count(`count_1`)
       └─ LocalExchange[SINGLE] ()
          │   Outputs: [count_0_1:bigint]
          │   Estimates: {rows: 1 (8B)}
          └─ RemoteExchange[GATHER]
             │   Outputs: [count_0_2:bigint]
             │   Estimates: {rows: 1 (8B)}
             └─ Aggregate(PARTIAL)
                │   Outputs: [count_0_4:bigint]
                │   Estimates: {rows: 1 (8B)}
                │   count_4 := count(*)
                └─ InnerJoin[(`c_nationkey` = `n_nationkey`)][$hashvalue, $hashvalue_0_6]
                   │   Outputs: []
                   │   Estimates: {rows: 302035 (4.61MB)}
                   │   Distribution: REPLICATED
                   ├─ Project[]
                   │  │   Outputs: [c_nationkey:integer, $hashvalue:bigint]
                   │  │   Estimates: {rows: 1500000 (5.72MB)}
                   │  │   $hashvalue := `combine_hash`(BIGINT '0', COALESCE(`$operator$hash_code`(`c_nationkey`), 0))
                   │  └─ RuntimeFilter
                   │     │   Outputs: [c_nationkey:integer]
                   │     │   Estimates: {rows: 1500000 (5.72MB)}
                   │     ├─ TableScan[adb:AdbTableHandle{schema=tpch, tableName=customer, partitionColumnHandles=[c_custkey]}]
                   │     │      Outputs: [c_nationkey:integer]
                   │     │      Estimates: {rows: 1500000 (5.72MB)}
                   │     │      c_nationkey := AdbColumnHandle{columnName=c_nationkey, type=4, isIndexed=true}
                   │     └─ RuntimeCollect
                   │        │   Outputs: [n_nationkey:integer]
                   │        │   Estimates: {rows: 5 (60B)}
                   │        └─ LocalExchange[ROUND_ROBIN] ()
                   │           │   Outputs: [n_nationkey:integer]
                   │           │   Estimates: {rows: 5 (60B)}
                   │           └─ RuntimeScan
                   │                  Outputs: [n_nationkey:integer]
                   │                  Estimates: {rows: 5 (60B)}
                   └─ LocalExchange[HASH][$hashvalue_0_6] ("n_nationkey")
                      │   Outputs: [n_nationkey:integer, $hashvalue_0_6:bigint]
                      │   Estimates: {rows: 5 (60B)}
                      └─ Project[]
                         │   Outputs: [n_nationkey:integer, $hashvalue_0_10:bigint]
                         │   Estimates: {rows: 5 (60B)}
                         │   $hashvalue_10 := `combine_hash`(BIGINT '0', COALESCE(`$operator$hash_code`(`n_nationkey`), 0))
                         └─ RemoteExchange[REPLICATE]
                            │   Outputs: [n_nationkey:integer]
                            │   Estimates: {rows: 5 (60B)}
                            └─ InnerJoin[(`n_regionkey` = `r_regionkey`)][$hashvalue_0_7, $hashvalue_0_8]
                               │   Outputs: [n_nationkey:integer]
                               │   Estimates: {rows: 5 (60B)}
                               │   Distribution: REPLICATED
                               ├─ Project[]
                               │  │   Outputs: [n_nationkey:integer, n_regionkey:integer, $hashvalue_0_7:bigint]
                               │  │   Estimates: {rows: 25 (200B)}
                               │  │   $hashvalue_7 := `combine_hash`(BIGINT '0', COALESCE(`$operator$hash_code`(`n_regionkey`), 0))
                               │  └─ RuntimeFilter
                               │     │   Outputs: [n_nationkey:integer, n_regionkey:integer]
                               │     │   Estimates: {rows: 25 (200B)}
                               │     ├─ TableScan[adb:AdbTableHandle{schema=tpch, tableName=nation, partitionColumnHandles=[]}]
                               │     │      Outputs: [n_nationkey:integer, n_regionkey:integer]
                               │     │      Estimates: {rows: 25 (200B)}
                               │     │      n_nationkey := AdbColumnHandle{columnName=n_nationkey, type=4, isIndexed=true}
                               │     │      n_regionkey := AdbColumnHandle{columnName=n_regionkey, type=4, isIndexed=true}
                               │     └─ RuntimeCollect
                               │        │   Outputs: [r_regionkey:integer]
                               │        │   Estimates: {rows: 1 (4B)}
                               │        └─ LocalExchange[ROUND_ROBIN] ()
                               │           │   Outputs: [r_regionkey:integer]
                               │           │   Estimates: {rows: 1 (4B)}
                               │           └─ RuntimeScan
                               │                  Outputs: [r_regionkey:integer]
                               │                  Estimates: {rows: 1 (4B)}
                               └─ LocalExchange[HASH][$hashvalue_0_8] ("r_regionkey")
                                  │   Outputs: [r_regionkey:integer, $hashvalue_0_8:bigint]
                                  │   Estimates: {rows: 1 (4B)}
                                  └─ ScanProject[table = adb:AdbTableHandle{schema=tpch, tableName=region, partitionColumnHandles=[]}]
                                         Outputs: [r_regionkey:integer, $hashvalue_0_9:bigint]
                                         Estimates: {rows: 1 (4B)}/{rows: 1 (B)}
                                         $hashvalue_9 := `combine_hash`(BIGINT '0', COALESCE(`$operator$hash_code`(`r_regionkey`), 0))
                                         r_regionkey := AdbColumnHandle{columnName=r_regionkey, type=4, isIndexed=true}

    返回结果中的主要参数说明见下表。

    参数

    说明

    Outputs: [symbol:type]

    每个算子的输出列及数据类型。

    Estimates: {rows: %s (%sB)}

    每个算子的估算行数及数据量。估算结果可用来决定优化器的Join Order和Data Shuffle。

EXPLAIN ANALYZE

您可以通过EXPLAIN ANALYZE命令查看查询的分布式执行计划以及实际执行代价,包括执行耗时、内存使用量,输入输出数据量等。

  • 语法

    EXPLAIN ANALYZE <SELECT statement>;
  • 示例

    EXPLAIN ANALYZE
    SELECT count(*)
          FROM
          nation, region, customer
          WHERE
          c_nationkey = n_nationkey
          AND n_regionkey = r_regionkey
          AND r_name = 'ASIA';

    返回结果如下:

    Fragment 1 [SINGLE]
        Output: 1 row (9B), PeakMemory: 178KB, WallTime: 1.00ns, Input: 32 rows (288B); per task: avg.: 32.00 std.dev.: 0.00
        Output layout: [count]
        Output partitioning: SINGLE []
        Aggregate(FINAL)
        │   Outputs: [count:bigint]
        │   Estimates: {rows: 1 (8B)}
        │   Output: 2 rows (18B), PeakMemory: 24B (0.00%), WallTime: 70.39us (0.03%)
        │   count := count(`count_1`)
        └─ LocalExchange[SINGLE] ()
           │   Outputs: [count1:bigint]
           │   Estimates: {rows: ? (?)}
           │   Output: 64 rows (576B), PeakMemory: 8KB (0.07%), WallTime: 238.69us (0.10%)
           └─ RemoteSource[2]
                  Outputs: [count2:bigint]
                  Estimates:
                  Output: 32 rows (288B), PeakMemory: 32KB (0.27%), WallTime: 182.82us (0.08%)
                  Input avg.: 4.00 rows, Input std.dev.: 264.58%
    
    Fragment 2 [adb:AdbPartitioningHandle{schema=tpch, tableName=customer, dimTable=false, shards=32, tableEngineType=Cstore, partitionColumns=c_custkey, prunedBuckets= empty}]
        Output: 32 rows (288B), PeakMemory: 6MB, WallTime: 164.00ns, Input: 1500015 rows (20.03MB); per task: avg.: 500005.00 std.dev.: 21941.36
        Output layout: [count4]
        Output partitioning: SINGLE []
        Aggregate(PARTIAL)
        │   Outputs: [count4:bigint]
        │   Estimates: {rows: 1 (8B)}
        │   Output: 64 rows (576B), PeakMemory: 336B (0.00%), WallTime: 1.01ms (0.42%)
        │   count_4 := count(*)
        └─ INNER Join[(`c_nationkey` = `n_nationkey`)][$hashvalue, $hashvalue6]
           │   Outputs: []
           │   Estimates: {rows: 302035 (4.61MB)}
           │   Output: 300285 rows (210B), PeakMemory: 641KB (5.29%), WallTime: 99.08ms (41.45%)
           │   Left (probe) Input avg.: 46875.00 rows, Input std.dev.: 311.24%
           │   Right (build) Input avg.: 0.63 rows, Input std.dev.: 264.58%
           │   Distribution: REPLICATED
           ├─ ScanProject[table = adb:AdbTableHandle{schema=tpch, tableName=customer, partitionColumnHandles=[c_custkey]}]
           │      Outputs: [c_nationkey:integer, $hashvalue:bigint]
           │      Estimates: {rows: 1500000 (5.72MB)}/{rows: 1500000 (5.72MB)}
           │      Output: 1500000 rows (20.03MB), PeakMemory: 5MB (44.38%), WallTime: 68.29ms (28.57%)
           │      $hashvalue := `combine_hash`(BIGINT '0', COALESCE(`$operator$hash_code`(`c_nationkey`), 0))
           │      c_nationkey := AdbColumnHandle{columnName=c_nationkey, type=4, isIndexed=true}
           │      Input: 1500000 rows (7.15MB), Filtered: 0.00%
           └─ LocalExchange[HASH][$hashvalue6] ("n_nationkey")
              │   Outputs: [n_nationkey:integer, $hashvalue6:bigint]
              │   Estimates: {rows: 5 (60B)}
              │   Output: 30 rows (420B), PeakMemory: 394KB (3.26%), WallTime: 455.03us (0.19%)
              └─ Project[]
                 │   Outputs: [n_nationkey:integer, $hashvalue10:bigint]
                 │   Estimates: {rows: 5 (60B)}
                 │   Output: 15 rows (210B), PeakMemory: 24KB (0.20%), WallTime: 83.61us (0.03%)
                 │   Input avg.: 0.63 rows, Input std.dev.: 264.58%
                 │   $hashvalue_10 := `combine_hash`(BIGINT '0', COALESCE(`$operator$hash_code`(`n_nationkey`), 0))
                 └─ RemoteSource[3]
                        Outputs: [n_nationkey:integer]
                        Estimates:
                        Output: 15 rows (75B), PeakMemory: 24KB (0.20%), WallTime: 45.97us (0.02%)
                        Input avg.: 0.63 rows, Input std.dev.: 264.58%
    
    Fragment 3 [adb:AdbPartitioningHandle{schema=tpch, tableName=nation, dimTable=true, shards=32, tableEngineType=Cstore, partitionColumns=, prunedBuckets= empty}]
        Output: 5 rows (25B), PeakMemory: 185KB, WallTime: 1.00ns, Input: 26 rows (489B); per task: avg.: 26.00 std.dev.: 0.00
        Output layout: [n_nationkey]
        Output partitioning: BROADCAST []
        INNER Join[(`n_regionkey` = `r_regionkey`)][$hashvalue7, $hashvalue8]
        │   Outputs: [n_nationkey:integer]
        │   Estimates: {rows: 5 (60B)}
        │   Output: 11 rows (64B), PeakMemory: 152KB (1.26%), WallTime: 255.86us (0.11%)
        │   Left (probe) Input avg.: 25.00 rows, Input std.dev.: 0.00%
        │   Right (build) Input avg.: 0.13 rows, Input std.dev.: 264.58%
        │   Distribution: REPLICATED
        ├─ ScanProject[table = adb:AdbTableHandle{schema=tpch, tableName=nation, partitionColumnHandles=[]}]
        │      Outputs: [n_nationkey:integer, n_regionkey:integer, $hashvalue7:bigint]
        │      Estimates: {rows: 25 (200B)}/{rows: 25 (200B)}
        │      Output: 25 rows (475B), PeakMemory: 16KB (0.13%), WallTime: 178.81us (0.07%)
        │      $hashvalue_7 := `combine_hash`(BIGINT '0', COALESCE(`$operator$hash_code`(`n_regionkey`), 0))
        │      n_nationkey := AdbColumnHandle{columnName=n_nationkey, type=4, isIndexed=true}
        │      n_regionkey := AdbColumnHandle{columnName=n_regionkey, type=4, isIndexed=true}
        │      Input: 25 rows (250B), Filtered: 0.00%
        └─ LocalExchange[HASH][$hashvalue8] ("r_regionkey")
           │   Outputs: [r_regionkey:integer, $hashvalue8:bigint]
           │   Estimates: {rows: 1 (4B)}
           │   Output: 2 rows (28B), PeakMemory: 34KB (0.29%), WallTime: 57.41us (0.02%)
           └─ ScanProject[table = adb:AdbTableHandle{schema=tpch, tableName=region, partitionColumnHandles=[]}]
                  Outputs: [r_regionkey:integer, $hashvalue9:bigint]
                  Estimates: {rows: 1 (4B)}/{rows: 1 (4B)}
                  Output: 1 row (14B), PeakMemory: 8KB (0.07%), WallTime: 308.99us (0.13%)
                  $hashvalue_9 := `combine_hash`(BIGINT '0', COALESCE(`$operator$hash_code`(`r_regionkey`), 0))
                  r_regionkey := AdbColumnHandle{columnName=r_regionkey, type=4, isIndexed=true}
                  Input: 1 row (5B), Filtered: 0.00%

    返回结果中的主要参数说明见下表。

    参数

    说明

    Outputs: [symbol:type]

    每个算子的输出列及数据类型。

    Estimates: {rows: %s (%sB)}

    每个算子的估算行数及数据量。估算结果可用来决定优化器的Join Order和Data Shuffle。

    PeakMemory: %s

    内存使用总和,用于分析内存使用的瓶颈点。

    WallTime: %s

    算子执行时间的累加总和,用于分析计算瓶颈点。

    说明

    由于存在并行计算,所以该时间并不是真实的执行时间。

    Input: %s rows (%sB)

    输入行数及数据量。

    per task: avg.: %s std.dev.: %s

    平均行数和其标准差,用于分析Stage内部的数据倾斜。

    Output: %s row (%sB)

    输出行数及数据量。

使用场景

您可以通过EXPLAIN ANALYZE分析一些常见的计划问题。

  • 过滤器未下推

    在如下两个查询中,相较于SQL 1,SQL 2中由于存在不能下推的函数 length(string_test) ,需要扫描全量数据进行计算:

    • SQL 1

      SELECT count(*) FROM test WHERE string_test = 'a';
    • SQL 2

      SELECT count(*) FROM test WHERE length(string_test) = 1;

    使用EXPLAIN ANALYZE分别分析上述两个查询的执行计划,对比计划中的Fragment 2,可以看出:

    • SQL 1使用的算子是TableScan,且Input avg.0.00 rows,说明过滤器下推成功,扫描数据量为0行。

      Fragment 2 [adb:AdbPartitioningHandle{schema=test4dmp, tableName=test, dimTable=false, shards=4, tableEngineType=Cstore, partitionColumns=id, prunedBuckets= empty}]
          Output: 4 rows (36B), PeakMemory: 0B, WallTime: 6.00ns, Input: 0 rows (0B); per task: avg.: 0.00 std.dev.: 0.00
          Output layout: [count_0_1]
          Output partitioning: SINGLE []
          Aggregate(PARTIAL)
          │   Outputs: [count_0_1:bigint]
          │   Estimates: {rows: 1 (8B)}
          │   Output: 8 rows (72B), PeakMemory: 0B (0.00%), WallTime: 212.92us (3.99%)
          │   count_0_1 := count(*)
          └─ TableScan[adb:AdbTableHandle{schema=test4dmp, tableName=test, partitionColumnHandles=[id]}]
                 Outputs: []
                 Estimates: {rows: 4 (0B)}
                 Output: 0 rows (0B), PeakMemory: 0B (0.00%), WallTime: 4.76ms (89.12%)
                 Input avg.: 0.00 rows, Input std.dev.: ?%
    • SQL 2使用的算子是ScanFilterProject,且Input9999 rows,同时,filterPredicate属性不为空(即filterPredicate = (`test4dmp`.`length`(`string_test`) = BIGINT '1'))表明没有下推的过滤器,扫描数据量为9999行。

      Fragment 2 [adb:AdbPartitioningHandle{schema=test4dmp, tableName=test, dimTable=false, shards=4, tableEngineType=Cstore, partitionColumns=id, prunedBuckets= empty}]
          Output: 4 rows (36B), PeakMemory: 0B, WallTime: 102.00ns, Input: 0 rows (0B); per task: avg.: 0.00 std.dev.: 0.00
          Output layout: [count_0_1]
          Output partitioning: SINGLE []
          Aggregate(PARTIAL)
          │   Outputs: [count_0_1:bigint]
          │   Estimates: {rows: 1 (8B)}
          │   Output: 8 rows (72B), PeakMemory: 0B (0.00%), WallTime: 252.23us (0.12%)
          │   count_0_1 := count(*)
          └─ ScanFilterProject[table = adb:AdbTableHandle{schema=test4dmp, tableName=test, partitionColumnHandles=[id]}, filterPredicate = (`test4dmp`.`length`(`string_test`) = BIGINT '1')]
                 Outputs: []
                 Estimates: {rows: 9999 (312.47kB)}/{rows: 9999 (312.47kB)}/{rows: ? (?)}
                 Output: 0 rows (0B), PeakMemory: 0B (0.00%), WallTime: 101.31ms (49.84%)
                 string_test := AdbColumnHandle{columnName=string_test, type=13, isIndexed=true}
                 Input: 9999 rows (110.32kB), Filtered: 100.00%
  • Bad SQL内存使用率

    您可以直接查看每个Fragment的PeakMemory来定位资源消耗的问题。排除计划中Disaster Broadcast的情况,高PeakMemory通常是因为连接数据膨胀、连接的左表数据量过大、TableScan算子扫描数据量过大等,需要从业务角度加条件限制数据量。另外,您也可以通过查看每个算子的PeakMemory百分比定位资源消耗最大的算子,再进一步分析。