Klasifikasi adalah model pembelajaran mesin yang dapat Anda gunakan untuk mengidentifikasi kelas objek sistem secara online. Sebagai contoh, Anda dapat menggunakan model ini untuk mengidentifikasi permintaan serangan. Anda juga dapat menggunakan model ini untuk mengidentifikasi hubungan antara elemen-elemen. Topik ini menjelaskan sintaks dari fungsi analisis klasifikasi. Topik ini juga memberikan contoh tentang cara menggunakan fungsi-fungsi tersebut.
Informasi latar belakang
Gambar berikut menunjukkan indeks sampel untuk fungsi analisis klasifikasi. Untuk informasi lebih lanjut, lihat Buat indeks.

Kode berikut menunjukkan log sampel:
1,Male,27,Software Engineer,6.1,6,42,6,Overweight,126,83,77,4200,None 2,Male,28,Doctor,6.2,6,60,8,Normal,125,80,75,10000,None 3,Male,28,Doctor,6.2,6,60,8,Normal,125,80,75,10000,None 4,Male,28,Sales Representative,5.9,4,30,8,Obese,140,90,85,3000,Sleep Apnea 5,Male,28,Sales Representative,5.9,4,30,8,Obese,140,90,85,3000,Sleep Apnea 6,Male,28,Software Engineer,5.9,4,30,8,Obese,140,90,85,3000,Insomnia 7,Male,29,Teacher,6.3,6,40,7,Obese,140,90,82,3500,Insomnia 8,Male,29,Doctor,7.8,7,75,6,Normal,120,80,70,8000,None 9,Male,29,Doctor,7.8,7,75,6,Normal,120,80,70,8000,None 10,Male,29,Doctor,7.8,7,75,6,Normal,120,80,70,8000,None 11,Male,29,Doctor,6.1,6,30,8,Normal,120,80,70,8000,None 12,Male,29,Doctor,7.8,7,75,6,Normal,120,80,70,8000,None 13,Male,29,Doctor,6.1,6,30,8,Normal,120,80,70,8000,None 14,Male,29,Doctor,6,6,30,8,Normal,120,80,70,8000,None 15,Male,29,Doctor,6,6,30,8,Normal,120,80,70,8000,None 16,Male,29,Doctor,6,6,30,8,Normal,120,80,70,8000,None 17,Female,29,Nurse,6.5,5,40,7,Normal Weight,132,87,80,4000,Sleep Apnea 18,Male,29,Doctor,6,6,30,8,Normal,120,80,70,8000,Sleep Apnea 19,Female,29,Nurse,6.5,5,40,7,Normal Weight,132,87,80,4000,Insomnia 20,Male,30,Doctor,7.6,7,75,6,Normal,120,80,70,8000,None 21,Male,30,Doctor,7.7,7,75,6,Normal,120,80,70,8000,None 22,Male,30,Doctor,7.7,7,75,6,Normal,120,80,70,8000,None 23,Male,30,Doctor,7.7,7,75,6,Normal,120,80,70,8000,None 24,Male,30,Doctor,7.7,7,75,6,Normal,120,80,70,8000,None 25,Male,30,Doctor,7.8,7,75,6,Normal,120,80,70,8000,None 26,Male,30,Doctor,7.9,7,75,6,Normal,120,80,70,8000,None 27,Male,30,Doctor,7.8,7,75,6,Normal,120,80,70,8000,None 28,Male,30,Doctor,7.9,7,75,6,Normal,120,80,70,8000,None 29,Male,30,Doctor,7.9,7,75,6,Normal,120,80,70,8000,None 30,Male,30,Doctor,7.9,7,75,6,Normal,120,80,70,8000,None 31,Female,30,Nurse,6.4,5,35,7,Normal Weight,130,86,78,4100,Sleep Apnea 32,Female,30,Nurse,6.4,5,35,7,Normal Weight,130,86,78,4100,Insomnia 33,Female,31,Nurse,7.9,8,75,4,Normal Weight,117,76,69,6800,None 34,Male,31,Doctor,6.1,6,30,8,Normal,125,80,72,5000,None 35,Male,31,Doctor,7.7,7,75,6,Normal,120,80,70,8000,None 36,Male,31,Doctor,6.1,6,30,8,Normal,125,80,72,5000,None 37,Male,31,Doctor,6.1,6,30,8,Normal,125,80,72,5000,None 38,Male,31,Doctor,7.6,7,75,6,Normal,120,80,70,8000,None 39,Male,31,Doctor,7.6,7,75,6,Normal,120,80,70,8000,None 40,Male,31,Doctor,7.6,7,75,6,Normal,120,80,70,8000,None 41,Male,31,Doctor,7.7,7,75,6,Normal,120,80,70,8000,None 42,Male,31,Doctor,7.7,7,75,6,Normal,120,80,70,8000,None 43,Male,31,Doctor,7.7,7,75,6,Normal,120,80,70,8000,None 44,Male,31,Doctor,7.8,7,75,6,Normal,120,80,70,8000,None 45,Male,31,Doctor,7.7,7,75,6,Normal,120,80,70,8000,None 46,Male,31,Doctor,7.8,7,75,6,Normal,120,80,70,8000,None 47,Male,31,Doctor,7.7,7,75,6,Normal,120,80,70,8000,None 48,Male,31,Doctor,7.8,7,75,6,Normal,120,80,70,8000,None 49,Male,31,Doctor,7.7,7,75,6,Normal,120,80,70,8000,None 50,Male,31,Doctor,7.7,7,75,6,Normal,120,80,70,8000,Sleep Apnea 51,Male,32,Engineer,7.5,8,45,3,Normal,120,80,70,8000,None 52,Male,32,Engineer,7.5,8,45,3,Normal,120,80,70,8000,None 53,Male,32,Doctor,6,6,30,8,Normal,125,80,72,5000,None 54,Male,32,Doctor,7.6,7,75,6,Normal,120,80,70,8000,None 55,Male,32,Doctor,6,6,30,8,Normal,125,80,72,5000,None 56,Male,32,Doctor,6,6,30,8,Normal,125,80,72,5000,None 57,Male,32,Doctor,7.7,7,75,6,Normal,120,80,70,8000,None 58,Male,32,Doctor,6,6,30,8,Normal,125,80,72,5000,None 59,Male,32,Doctor,6,6,30,8,Normal,125,80,72,5000,None 60,Male,32,Doctor,7.7,7,75,6,Normal,120,80,70,8000,None 61,Male,32,Doctor,6,6,30,8,Normal,125,80,72,5000,None 62,Male,32,Doctor,6,6,30,8,Normal,125,80,72,5000,None 63,Male,32,Doctor,6.2,6,30,8,Normal,125,80,72,5000,None 64,Male,32,Doctor,6.2,6,30,8,Normal,125,80,72,5000,None 65,Male,32,Doctor,6.2,6,30,8,Normal,125,80,72,5000,None 66,Male,32,Doctor,6.2,6,30,8,Normal,125,80,72,5000,None 67,Male,32,Accountant,7.2,8,50,6,Normal Weight,118,76,68,7000,None 68,Male,33,Doctor,6,6,30,8,Normal,125,80,72,5000,Insomnia 69,Female,33,Scientist,6.2,6,50,6,Overweight,128,85,76,5500,None 70,Female,33,Scientist,6.2,6,50,6,Overweight,128,85,76,5500,None 71,Male,33,Doctor,6.1,6,30,8,Normal,125,80,72,5000,None 72,Male,33,Doctor,6.1,6,30,8,Normal,125,80,72,5000,None 73,Male,33,Doctor,6.1,6,30,8,Normal,125,80,72,5000,None 74,Male,33,Doctor,6.1,6,30,8,Normal,125,80,72,5000,None 75,Male,33,Doctor,6,6,30,8,Normal,125,80,72,5000,None 76,Male,33,Doctor,6,6,30,8,Normal,125,80,72,5000,None 77,Male,33,Doctor,6,6,30,8,Normal,125,80,72,5000,None 78,Male,33,Doctor,6,6,30,8,Normal,125,80,72,5000,None 79,Male,33,Doctor,6,6,30,8,Normal,125,80,72,5000,None 80,Male,33,Doctor,6,6,30,8,Normal,125,80,72,5000,None 81,Female,34,Scientist,5.8,4,32,8,Overweight,131,86,81,5200,Sleep Apnea 82,Female,34,Scientist,5.8,4,32,8,Overweight,131,86,81,5200,Sleep Apnea 83,Male,35,Teacher,6.7,7,40,5,Overweight,128,84,70,5600,None 84,Male,35,Teacher,6.7,7,40,5,Overweight,128,84,70,5600,None 85,Male,35,Software Engineer,7.5,8,60,5,Normal Weight,120,80,70,8000,None 86,Female,35,Accountant,7.2,8,60,4,Normal,115,75,68,7000,None 87,Male,35,Engineer,7.2,8,60,4,Normal,125,80,65,5000,None 88,Male,35,Engineer,7.2,8,60,4,Normal,125,80,65,5000,None 89,Male,35,Engineer,7.3,8,60,4,Normal,125,80,65,5000,None 90,Male,35,Engineer,7.3,8,60,4,Normal,125,80,65,5000,None 91,Male,35,Engineer,7.3,8,60,4,Normal,125,80,65,5000,None 92,Male,35,Engineer,7.3,8,60,4,Normal,125,80,65,5000,None 93,Male,35,Software Engineer,7.5,8,60,5,Normal Weight,120,80,70,8000,None 94,Male,35,Lawyer,7.4,7,60,5,Obese,135,88,84,3300,Sleep Apnea 95,Female,36,Accountant,7.2,8,60,4,Normal,115,75,68,7000,Insomnia 96,Female,36,Accountant,7.1,8,60,4,Normal,115,75,68,7000,None 97,Female,36,Accountant,7.2,8,60,4,Normal,115,75,68,7000,None 98,Female,36,Accountant,7.1,8,60,4,Normal,115,75,68,7000,None 99,Female,36,Teacher,7.1,8,60,4,Normal,115,75,68,7000,None 100,Female,36,Teacher,7.1,8,60,4,Normal,115,75,68,7000,None 101,Female,36,Teacher,7.2,8,60,4,Normal,115,75,68,7000,None
Fungsi
Anda dapat menggunakan model pembelajaran mesin klasifikasi untuk mengidentifikasi kelas objek sistem secara online.
Fungsi | Sintaksis | Deskripsi | Tipe data nilai kembali |
decision_tree_classifier( target_variable varchar, input_variable_array array(varchar), target_variable_name varchar, input_variable_name_array array(varchar), input_variable_type_array array(varchar), <opsional> model_options varchar ) | Mengembalikan model pohon keputusan terlatih yang dapat digunakan untuk klasifikasi data dan analisis penyebab berdasarkan sampel yang baru saja ditentukan. | varchar | |
decision_tree_predict( decision_tree_model_in_json varchar, input_variable_array array(varchar) ) | Mengidentifikasi kelas objek sistem berdasarkan sampel yang ditentukan dan model pohon keputusan yang dikembalikan oleh fungsi decision_tree_classifier. | varchar |
Fungsi decision_tree_classifier
Fungsi decision_tree_classifier mengembalikan model pohon keputusan terlatih yang dapat digunakan untuk klasifikasi data dan analisis penyebab berdasarkan sampel yang baru ditentukan.
varchar decision_tree_classifier(target_variable varchar,input_variable_array array(varchar),target_variable_name varchar,input_variable_name_array array(varchar),input_variable_type_array array(varchar),<opsional> model_options varchar)Parameter | Deskripsi |
| Variabel keluaran. |
| Array variabel masukan. Fungsi mengonversi variabel masukan menjadi tipe string dan membentuk array satu dimensi. |
| Nama variabel keluaran. |
| Array nama variabel masukan. |
| Array tipe variabel masukan. Tipe variabel masukan yang didukung:
|
| Parameter lanjutan dari model pohon keputusan. Dalam banyak kasus, Anda tidak perlu mengonfigurasi parameter ini. Nilainya terdiri dari pasangan kunci-nilai. Beberapa pasangan kunci-nilai dipisahkan dengan koma (,) atau titik dua (:). Sebagai contoh, Anda dapat menentukan Parameter lanjutan dari model pohon keputusan:
|
Contoh
Pernyataan kueri
* | with sleep_health_group_data as ( select g.group_id, s.* from ( select 'G1' as group_id union all select 'G2' as group_id ) as g -- Tambahkan bidang group_id untuk menentukan bahwa fungsi agregat dikembalikan dalam identifikasi berbasis model pohon keputusan. cross join log as s ) select group_id, decision_tree_classifier( sleep_disorder, array[cast(person_id as varchar), cast(gender as varchar), cast(age as varchar), cast(occupation as varchar), cast(sleep_duration as varchar), cast(quality_of_sleep as varchar), cast(physical_activity_level as varchar), cast(stress_level as varchar), cast(bmi_category as varchar), cast(blood_pressure_systolic as varchar), cast(blood_pressure_diastolic as varchar), cast(heart_rate as varchar), cast(daily_steps as varchar)], 'sleep_disorder', array['person_id', 'gender', 'age', 'occupation', 'sleep_duration', 'quality_of_sleep', 'physical_activity_level', 'stress_level', 'bmi_category', 'blood_pressure_systolic', 'blood_pressure_diastolic', 'heart_rate', 'daily_steps'], array['ID_NUM', 'X_STR_CATEGORICAL', 'X_NUMERIC', 'X_STR_CATEGORICAL', 'X_NUMERIC', 'X_NUMERIC', 'X_NUMERIC', 'X_NUMERIC', 'X_STR_CATEGORICAL', 'X_NUMERIC', 'X_NUMERIC', 'X_NUMERIC', 'X_NUMERIC'] ) as sleep_health_model from sleep_health_group_data group by group_id order by group_idHasil kueri dan analisis
Bidang
sleep_health_modelmenunjukkan model pohon keputusan. BidangdecisionTreeEncodemenunjukkan hasil serialisasi model pohon keputusan. Fungsi ini mengembalikan model pohon keputusan yang dapat digunakan dalam fungsi decision_tree_predict untuk mengidentifikasi kelas objek sistem.group_id
sleep_health_model
G1
{ "returnCode": 0, "message": "OK", "decisionTreeEncode": "gANjc2tsZWFybi50cmVlLl9jbGFzc2VzCkRlY2lzaW9uVHJlZUNsYXNzaWZpZXIKcQApgXEBfXECKFgJAAAAY3JpdGVyaW9ucQNYBAAAAGdpbmlxBFgIAAAAc3BsaXR0ZXJxBVgEAAAAYmVzdHEGWAkAAABtYXhfZGVwdGhxB05YEQAAAG1pbl9zYW1wbGVzX3NwbGl0cQhLFFgQAAAAbWluX3NhbXBsZXNfbGVhZnEJSwpYGAAAAG1pbl93ZWlnaHRfZnJhY3Rpb25fbGVhZnEKRwAAAAAAAAAAWAwAAABtYXhfZmVhdHVyZXNxC05YDgAAAG1heF9sZWFmX25vZGVzcQxOWAwAAAByYW5kb21fc3RhdGVxDU5YFQAAAG1pbl9pbXB1cml0eV9kZWNyZWFzZXEORz+EeuFHrhR7WBIAAABtaW5faW1wdXJpdHlfc3BsaXRxD05YDAAAAGNsYXNzX3dlaWdodHEQWAgAAABiYWxhbmNlZHERWAkAAABjY3BfYWxwaGFxEkcAAAAAAAAAAFgOAAAAbl9mZWF0dXJlc19pbl9xE0sXWAsAAABuX2ZlYXR1cmVzX3EUSxdYCgAAAG5fb3V0cHV0c19xFUsBWAgAAABjbGFzc2VzX3EWY251bXB5LmNvcmUubXVsdGlhcnJheQpfcmVjb25zdHJ1Y3QKcRdjbnVtcHkKbmRhcnJheQpxGEsAhXEZQwFicRqHcRtScRwoSwFLA4VxHWNudW1weQpkdHlwZQpxHlgDAAAAVTExcR+JiIdxIFJxIShLA1gBAAAAPHEiTk5OSyxLBEsIdHEjYolDhEkAAABuAAAAcwAAAG8AAABtAAAAbgAAAGkAAABhAAAAAAAAAAAAAAAAAAAATgAAAG8AAABuAAAAZQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTAAAAbAAAAGUAAABlAAAAcAAAACAAAABBAAAAcAAAAG4AAABlAAAAYQAAAHEkdHElYlgKAAAAbl9jbGFzc2VzX3EmY251bXB5LmNvcmUubXVsdGlhcnJheQpzY2FsYXIKcSdoHlgCAAAAaThxKImIh3EpUnEqKEsDaCJOTk5K/////0r/////SwB0cStiQwgDAAAAAAAAAHEshnEtUnEuWA0AAABtYXhfZmVhdHVyZXNfcS9LF1gFAAAAdHJlZV9xMGNza2xlYXJuLnRyZWUuX3RyZWUKVHJlZQpxMUsXaBdoGEsAhXEyaBqHcTNScTQoSwFLAYVxNWgqiUMIAwAAAAAAAABxNnRxN2JLAYdxOFJxOX1xOihoB0sEWAoAAABub2RlX2NvdW50cTtLCVgFAAAAbm9kZXNxPGgXaBhLAIVxPWgah3E+UnE/KEsBSwmFcUBoHlgDAAAAVjU2cUGJiIdxQlJxQyhLA1gBAAAAfHFETihYCgAAAGxlZnRfY2hpbGRxRVgLAAAAcmlnaHRfY2hpbGRxRlgHAAAAZmVhdHVyZXFHWAkAAAB0aHJlc2hvbGRxSFgIAAAAaW1wdXJpdHlxSVgOAAAAbl9ub2RlX3NhbXBsZXNxSlgXAAAAd2VpZ2h0ZWRfbl9ub2RlX3NhbXBsZXNxS3RxTH1xTShoRWgeWAIAAABpOHFOiYiHcU9ScVAoSwNoIk5OTkr/////Sv////9LAHRxUWJLAIZxUmhGaFBLCIZxU2hHaFBLEIZxVGhIaB5YAgAAAGY4cVWJiIdxVlJxVyhLA2giTk5OSv////9K/////0sAdHFYYksYhnFZaEloV0sghnFaaEpoUEsohnFbaEtoV0swhnFcdUs4SwFLEHRxXWKJQvgBAAABAAAAAAAAAAgAAAAAAAAAFAAAAAAAAAAAAAAAAGBXQIxVVVVVVeU/7AIAAAAAAAAjAAAAAGCHQAIAAAAAAAAABwAAAAAAAAAQAAAAAAAAAAAAAAAAAOA/Os7p5i3y4j9qAgAAAAAAAFi6jsHEM4FAAwAAAAAAAAAEAAAAAAAAABMAAAAAAAAAAAAAAAAQYEDSdORBSg3bP+QAAAAAAAAAZbNva5f3ckD//////////////////////v////////8AAAAAAAAAwAAAAAAAAAAANgAAAAAAAADdq1evXr0+QAUAAAAAAAAABgAAAAAAAAAWAAAAAAAAAAAAAAAA4LVAtALg68NO0z+uAAAAAAAAALo4eoDBC3FA//////////////////////7/////////AAAAAAAAAMBsIUDNeQPfPywAAAAAAAAAzbIsy7KsUUD//////////////////////v////////8AAAAAAAAAwBCB6oIYErM/ggAAAAAAAAAXGF6bKUFpQP/////////////////////+/////////wAAAAAAAADAemDLWrmn0T+GAQAAAAAAAK+BWy/k325A//////////////////////7/////////AAAAAAAAAMCIcoA8/1e2P4IAAAAAAAAABRfF+eywaEBxXnRxX2JYBgAAAHZhbHVlc3FgaBdoGEsAhXFhaBqHcWJScWMoSwFLCUsBSwOHcWRoV4lD2LGqqqqqKm9AUaqqqqoqb0CYqqqqqipvQDcMwzAMw25A81YgXYF0bkDeFV7hFV5OQOG2bdu27WtAXnpm6ZmlQUAERmAERmBGQAAAAAAAAAAA3atXr169PkAAAAAAAAAAAOG2bdu27WtAdSPVjVQ3EkAERmAERmBGQEySJEmSJD1AAAAAAAAAAAByHMdxHMdEQJckSZIkSWhAdSPVjVQ3EkAqmZIpmZIJQKyqqqqqqjZAebjG4hoLakBzP/dzP/cvQHqe53me5wlAU2xKsSnFFkAsJVMyJZNnQHFldHFmYnViWBAAAABfc2tsZWFybl92ZXJzaW9ucWdYBgAAADAuMjQuMnFodWIu", "decisionTreeInText": "|--- blood_pressure_diastolic \u003c\u003d 93.50\n| |--- bmi_category.Normal \u003c\u003d 0.50\n| | |--- blood_pressure_systolic \u003c\u003d 128.50\n| | | |--- class: None\n| | |--- blood_pressure_systolic \u003e 128.50\n| | | |--- daily_steps \u003c\u003d 5600.00\n| | | | |--- class: Sleep Apnea\n| | | |--- daily_steps \u003e 5600.00\n| | | | |--- class: Insomnia\n| |--- bmi_category.Normal \u003e 0.50\n| | |--- class: None\n|--- blood_pressure_diastolic \u003e 93.50\n| |--- class: Sleep Apnea\n", "uniqueLabels": [ "Insomnia", "None", "Sleep Apnea" ], "confusionMatrix": [ [ 120, 14, 20 ], [ 8, 420, 10 ], [ 2, 10, 144 ] ], "dataColumnNames": [ "person_id", "gender", "age", "occupation", "sleep_duration", "quality_of_sleep", "physical_activity_level", "stress_level", "bmi_category", "blood_pressure_systolic", "blood_pressure_diastolic", "heart_rate", "daily_steps", "sleep_disorder" ], "dataColumnTypes": { "occupation": "X_STR_CATEGORICAL", "blood_pressure_diastolic": "X_NUMERIC", "gender": "X_STR_CATEGORICAL", "heart_rate": "X_NUMERIC", "blood_pressure_systolic": "X_NUMERIC", "stress_level": "X_NUMERIC", "daily_steps": "X_NUMERIC", "physical_activity_level": "X_NUMERIC", "bmi_category": "X_STR_CATEGORICAL", "sleep_duration": "X_NUMERIC", "quality_of_sleep": "X_NUMERIC", "sleep_disorder": "Y_STR_CATEGORICAL", "age": "X_NUMERIC", "person_id": "ID_NUM" }, "categoricalVariableValues": { "bmi_category": [ "Normal", "Normal Weight", "Obese", "Overweight" ], "gender": [ "Female", "Male" ], "occupation": [ "Accountant", "Doctor", "Engineer", "Lawyer", "Manager", "Nurse", "Sales Representative", "Salesperson", "Scientist", "Software Engineer", "Teacher" ] } }G2
{ "returnCode": 0, "message": "OK", "decisionTreeEncode": "gANjc2tsZWFybi50cmVlLl9jbGFzc2VzCkRlY2lzaW9uVHJlZUNsYXNzaWZpZXIKcQApgXEBfXECKFgJAAAAY3JpdGVyaW9ucQNYBAAAAGdpbmlxBFgIAAAAc3BsaXR0ZXJxBVgEAAAAYmVzdHEGWAkAAABtYXhfZGVwdGhxB05YEQAAAG1pbl9zYW1wbGVzX3NwbGl0cQhLFFgQAAAAbWluX3NhbXBsZXNfbGVhZnEJSwpYGAAAAG1pbl93ZWlnaHRfZnJhY3Rpb25fbGVhZnEKRwAAAAAAAAAAWAwAAABtYXhfZmVhdHVyZXNxC05YDgAAAG1heF9sZWFmX25vZGVzcQxOWAwAAAByYW5kb21fc3RhdGVxDU5YFQAAAG1pbl9pbXB1cml0eV9kZWNyZWFzZXEORz+EeuFHrhR7WBIAAABtaW5faW1wdXJpdHlfc3BsaXRxD05YDAAAAGNsYXNzX3dlaWdodHEQWAgAAABiYWxhbmNlZHERWAkAAABjY3BfYWxwaGFxEkcAAAAAAAAAAFgOAAAAbl9mZWF0dXJlc19pbl9xE0sXWAsAAABuX2ZlYXR1cmVzX3EUSxdYCgAAAG5fb3V0cHV0c19xFUsBWAgAAABjbGFzc2VzX3EWY251bXB5LmNvcmUubXVsdGlhcnJheQpfcmVjb25zdHJ1Y3QKcRdjbnVtcHkKbmRhcnJheQpxGEsAhXEZQwFicRqHcRtScRwoSwFLA4VxHWNudW1weQpkdHlwZQpxHlgDAAAAVTExcR+JiIdxIFJxIShLA1gBAAAAPHEiTk5OSyxLBEsIdHEjYolDhEkAAABuAAAAcwAAAG8AAABtAAAAbgAAAGkAAABhAAAAAAAAAAAAAAAAAAAATgAAAG8AAABuAAAAZQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTAAAAbAAAAGUAAABlAAAAcAAAACAAAABBAAAAcAAAAG4AAABlAAAAYQAAAHEkdHElYlgKAAAAbl9jbGFzc2VzX3EmY251bXB5LmNvcmUubXVsdGlhcnJheQpzY2FsYXIKcSdoHlgCAAAAaThxKImIh3EpUnEqKEsDaCJOTk5K/////0r/////SwB0cStiQwgDAAAAAAAAAHEshnEtUnEuWA0AAABtYXhfZmVhdHVyZXNfcS9LF1gFAAAAdHJlZV9xMGNza2xlYXJuLnRyZWUuX3RyZWUKVHJlZQpxMUsXaBdoGEsAhXEyaBqHcTNScTQoSwFLAYVxNWgqiUMIAwAAAAAAAABxNnRxN2JLAYdxOFJxOX1xOihoB0sEWAoAAABub2RlX2NvdW50cTtLCVgFAAAAbm9kZXNxPGgXaBhLAIVxPWgah3E+UnE/KEsBSwmFcUBoHlgDAAAAVjU2cUGJiIdxQlJxQyhLA1gBAAAAfHFETihYCgAAAGxlZnRfY2hpbGRxRVgLAAAAcmlnaHRfY2hpbGRxRlgHAAAAZmVhdHVyZXFHWAkAAAB0aHJlc2hvbGRxSFgIAAAAaW1wdXJpdHlxSVgOAAAAbl9ub2RlX3NhbXBsZXNxSlgXAAAAd2VpZ2h0ZWRfbl9ub2RlX3NhbXBsZXNxS3RxTH1xTShoRWgeWAIAAABpOHFOiYiHcU9ScVAoSwNoIk5OTkr/////Sv////9LAHRxUWJLAIZxUmhGaFBLCIZxU2hHaFBLEIZxVGhIaB5YAgAAAGY4cVWJiIdxVlJxVyhLA2giTk5OSv////9K/////0sAdHFYYksYhnFZaEloV0sghnFaaEpoUEsohnFbaEtoV0swhnFcdUs4SwFLEHRxXWKJQvgBAAABAAAAAAAAAAgAAAAAAAAAFAAAAAAAAAAAAAAAAGBXQIxVVVVVVeU/7AIAAAAAAAAjAAAAAGCHQAIAAAAAAAAABwAAAAAAAAAQAAAAAAAAAAAAAAAAAOA/Os7p5i3y4j9qAgAAAAAAAFi6jsHEM4FAAwAAAAAAAAAEAAAAAAAAABMAAAAAAAAAAAAAAAAQYEDSdORBSg3bP+QAAAAAAAAAZbNva5f3ckD//////////////////////v////////8AAAAAAAAAwAAAAAAAAAAANgAAAAAAAADdq1evXr0+QAUAAAAAAAAABgAAAAAAAAAWAAAAAAAAAAAAAAAA4LVAtALg68NO0z+uAAAAAAAAALo4eoDBC3FA//////////////////////7/////////AAAAAAAAAMBsIUDNeQPfPywAAAAAAAAAzbIsy7KsUUD//////////////////////v////////8AAAAAAAAAwBCB6oIYErM/ggAAAAAAAAAXGF6bKUFpQP/////////////////////+/////////wAAAAAAAADAemDLWrmn0T+GAQAAAAAAAK+BWy/k325A//////////////////////7/////////AAAAAAAAAMCIcoA8/1e2P4IAAAAAAAAABRfF+eywaEBxXnRxX2JYBgAAAHZhbHVlc3FgaBdoGEsAhXFhaBqHcWJScWMoSwFLCUsBSwOHcWRoV4lD2LGqqqqqKm9AUaqqqqoqb0CYqqqqqipvQDcMwzAMw25A81YgXYF0bkDeFV7hFV5OQOG2bdu27WtAXnpm6ZmlQUAERmAERmBGQAAAAAAAAAAA3atXr169PkAAAAAAAAAAAOG2bdu27WtAdSPVjVQ3EkAERmAERmBGQEySJEmSJD1AAAAAAAAAAAByHMdxHMdEQJckSZIkSWhAdSPVjVQ3EkAqmZIpmZIJQKyqqqqqqjZAebjG4hoLakBzP/dzP/cvQHqe53me5wlAU2xKsSnFFkAsJVMyJZNnQHFldHFmYnViWBAAAABfc2tsZWFybl92ZXJzaW9ucWdYBgAAADAuMjQuMnFodWIu", "decisionTreeInText": "|--- blood_pressure_diastolic \u003c\u003d 93.50\n| |--- bmi_category.Normal \u003c\u003d 0.50\n| | |--- blood_pressure_systolic \u003c\u003d 128.50\n| | | |--- class: None\n| | |--- blood_pressure_systolic \u003e 128.50\n| | | |--- daily_steps \u003c\u003d 5600.00\n| | | | |--- class: Sleep Apnea\n| | | |--- daily_steps \u003e 5600.00\n| | | | |--- class: Insomnia\n| |--- bmi_category.Normal \u003e 0.50\n| | |--- class: None\n|--- blood_pressure_diastolic \u003e 93.50\n| |--- class: Sleep Apnea\n", "uniqueLabels": [ "Insomnia", "None", "Sleep Apnea" ], "confusionMatrix": [ [ 120, 14, 20 ], [ 8, 420, 10 ], [ 2, 10, 144 ] ], "dataColumnNames": [ "person_id", "gender", "age", "occupation", "sleep_duration", "quality_of_sleep", "physical_activity_level", "stress_level", "bmi_category", "blood_pressure_systolic", "blood_pressure_diastolic", "heart_rate", "daily_steps", "sleep_disorder" ], "dataColumnTypes": { "occupation": "X_STR_CATEGORICAL", "blood_pressure_diastolic": "X_NUMERIC", "gender": "X_STR_CATEGORICAL", "heart_rate": "X_NUMERIC", "blood_pressure_systolic": "X_NUMERIC", "stress_level": "X_NUMERIC", "daily_steps": "X_NUMERIC", "physical_activity_level": "X_NUMERIC", "bmi_category": "X_STR_CATEGORICAL", "sleep_duration": "X_NUMERIC", "quality_of_sleep": "X_NUMERIC", "sleep_disorder": "Y_STR_CATEGORICAL", "age": "X_NUMERIC", "person_id": "ID_NUM" }, "categoricalVariableValues": { "bmi_category": [ "Normal", "Normal Weight", "Obese", "Overweight" ], "gender": [ "Female", "Male" ], "occupation": [ "Accountant", "Doctor", "Engineer", "Lawyer", "Manager", "Nurse", "Sales Representative", "Salesperson", "Scientist", "Software Engineer", "Teacher" ] } }
Fungsi decision_tree_predict
Fungsi decision_tree_predict mengidentifikasi kelas objek sistem berdasarkan sampel yang ditentukan dan model pohon keputusan yang dikembalikan.
varchar decision_tree_predict(decision_tree_model_in_json varchar,input_variable_array array(varchar))Parameter | Deskripsi |
| Nilai kembali dari fungsi decision_tree_classifier. |
| Array variabel masukan yang digunakan dalam klasifikasi. Fungsi mengonversi variabel masukan dan membentuk array satu dimensi. |
Contoh
Pernyataan kueri
* | with model as ( select 'G1' as group_id, '{"returnCode":0,"message":"OK","decisionTree":{"nodeKey":0,"parentNodeKey":-1,"isLeaf":false,"numSamplesByClass":[124.66666666666676,124.66666666666688,124.66666666666683],"numSamples":374.00000000000045,"probabilitiesByClass":[0.33333333333333315,0.33333333333333354,0.33333333333333337],"predictedClass":"None","predictedClassProbability":0.33333333333333354,"splittingFeature":"blood_pressure_diastolic","threshold":93.5,"depth":1,"leftChild":{"nodeKey":1,"parentNodeKey":0,"isLeaf":false,"numSamplesByClass":[123.04761904761914,121.82039573820417,30.367521367521377],"numSamples":275.2355361533447,"probabilitiesByClass":[0.4470629801925882,0.4426041689265487,0.11033285088086307],"predictedClass":"Insomnia","predictedClassProbability":0.4470629801925882,"splittingFeature":"bmi_category.Normal","threshold":0.5,"depth":2,"leftChild":{"nodeKey":2,"parentNodeKey":1,"isLeaf":false,"numSamplesByClass":[111.7142857142858,17.646879756468795,22.37606837606838],"numSamples":151.737233846823,"probabilitiesByClass":[0.7362351539046778,0.11629894198732474,0.14746590410799743],"predictedClass":"Insomnia","predictedClassProbability":0.7362351539046778,"splittingFeature":"blood_pressure_systolic","threshold":128.5,"depth":3,"leftChild":{"nodeKey":3,"parentNodeKey":2,"isLeaf":true,"numSamplesByClass":[0.0,15.369863013698625,0.0],"numSamples":15.369863013698625,"probabilitiesByClass":[0.0,1.0,0.0],"predictedClass":"None","predictedClassProbability":1.0,"threshold":0.0,"depth":4},"rightChild":{"nodeKey":4,"parentNodeKey":2,"isLeaf":false,"numSamplesByClass":[111.7142857142858,2.2770167427701673,22.37606837606838],"numSamples":136.36737083312434,"probabilitiesByClass":[0.8192156601082596,0.016697665496217574,0.16408667439552274],"predictedClass":"Insomnia","predictedClassProbability":0.8192156601082596,"splittingFeature":"daily_steps","threshold":5600.0,"depth":4,"leftChild":{"nodeKey":5,"parentNodeKey":4,"isLeaf":true,"numSamplesByClass":[14.57142857142857,0.0,20.77777777777778],"numSamples":35.34920634920635,"probabilitiesByClass":[0.41221374045801523,0.0,0.5877862595419848],"predictedClass":"Sleep Apnea","predictedClassProbability":0.5877862595419848,"threshold":0.0,"depth":5},"rightChild":{"nodeKey":6,"parentNodeKey":4,"isLeaf":true,"numSamplesByClass":[97.14285714285721,2.2770167427701673,1.5982905982905984],"numSamples":101.01816448391799,"probabilitiesByClass":[0.9616375197385643,0.022540666368301186,0.015821813893134487],"predictedClass":"Insomnia","predictedClassProbability":0.9616375197385643,"threshold":0.0,"depth":5}}},"rightChild":{"nodeKey":7,"parentNodeKey":1,"isLeaf":true,"numSamplesByClass":[11.333333333333332,104.17351598173533,7.9914529914529915],"numSamples":123.49830230652165,"probabilitiesByClass":[0.09176914274662742,0.8435218463422892,0.06470901091108344],"predictedClass":"None","predictedClassProbability":0.8435218463422892,"threshold":0.0,"depth":3}},"rightChild":{"nodeKey":8,"parentNode Key":0,"isLeaf":true,"numSamplesByClass":[1.619047619047619,2.846270928462709,94.29914529914537],"numSamples":98.7644638466557,"probabilitiesByClass":[0.016393017852670114,0.028818775677068465,0.9547882064702613],"predictedClass":"Sleep Apnea","predictedClassProbability":0.9547882064702613,"threshold":0.0,"depth":2}},"decisionTreeClassLabels":["Insomnia","None","Sleep Apnea"],"decisionTreeEncode":"gASVgwcAAAAAAACMFXNrbGVhcm4udHJlZS5fY2xhc3Nlc5SMFkRlY2lzaW9uVHJlZUNsYXNzaWZpZXKUk5QpgZR9lCiMCWNyaXRlcmlvbpSMBGdpbmmUjAhzcGxpdHRlcpSMBGJlc3SUjAltYXhfZGVwdGiUTowRbWluX3NhbXBsZXNfc3BsaXSUSxSMEG1pbl9zYW1wbGVzX2xlYWaUSwqMGG1pbl93ZWlnaHRfZnJhY3Rpb25fbGVhZpRHP4R64UeuFHuMDG1heF9mZWF0dXJlc5ROjA5tYXhfbGVhZl9ub2Rlc5ROjAxyYW5kb21fc3RhdGWUTowVbWluX2ltcHVyaXR5X2RlY3JlYXNllEc/hHrhR64Ue4wMY2xhc3Nfd2VpZ2h0lIwIYmFsYW5jZWSUjAljY3BfYWxwaGGURwAAAAAAAAAAjA5uX2ZlYXR1cmVzX2luX5RLF4wKbl9vdXRwdXRzX5RLAYwIY2xhc3Nlc1+UjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5SMBW51bXB5lIwHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsDhZRoGowFZHR5c2NhbGFylJOUaCOMAmk4lImIh5RSlChLA2gnTk5OSv////9K/////0sAdJRiQwgDAAAAAAAAAJSGlFKUjA1tYXhfZmVhdHVyZXNflEsXjAV0cmVlX5SMEnNrbGVhcm4udHJlZS5fdHJlZZSMBFRyZWWUk5RLF2gZaBxLAIWUaB6HlFKUKEsBSwGFlGgwiUMIAwAAAAAAAACUdJRiSwGHlFKUfZQoaAlLBIwKbm9kZV9jb3VudJRLCYwFbm9kZXOUaBloHEsAhZRoHoeUUpQoSwFLCYWUaCOMA1Y1NpSJiIeUUpQoSwOMAXyUTiiMCmxlZnRfY2hpbGSUjAtyaWdodF9jaGlsZJSMB2ZlYXR1cmWUjAl0aHJlc2hvbGSUjAhpbXB1cml0eZSMDm5fbm9kZV9zYW1wbGVzlIwXd2VpZ2h0ZWRfbl9ub2RlX3NhbXBsZXOUdJR9lChoTWgjjAJpOJSJiIeUUpQoSwNoJ05OTkr/////Sv////9LAHSUYksAhpRoTmhYSwiGlGhPaFhLEIaUaFBoI4wCZjiUiYiHlFKUKEsDaCdOTk5K/////0r/////SwB0lGJLGIaUaFFoX0sghpRoUmhYSyiGlGhTaF9LMIaUdUs4SwFLEHSUYolC+AEAAAEAAAAAAAAACAAAAAAAAAAUAAAAAAAAAAAAAAAAYFdAS1VVVVVV5T92AQAAAAAAAP3/////X3dAAgAAAAAAAAAHAAAAAAAAABAAAAAAAAAAAAAAAAAA4D8xzunmLfLiPzUBAAAAAAAAKbqOwcQzcUADAAAAAAAAAAQAAAAAAAAAEwAAAAAAAAAAAAAAABBgQBx15EFKDds/cgAAAAAAAAB4s29rl/diQP/////////////////////+/////////wAAAAAAAADAAAAAAAAAAAAbAAAAAAAAANOrV69evS5ABQAAAAAAAAAGAAAAAAAAABYAAAAAAAAAAAAAAADgtUAeA+Drw07TP1cAAAAAAAAAvjh6gMELYUD//////////////////////v////////8AAAAAAAAAwHAhQM15A98/FgAAAAAAAADNsizLsqxBQP/////////////////////+/////////wAAAAAAAADAqIHqghgSsz9BAAAAAAAAABcYXpspQVlA//////////////////////7/////////AAAAAAAAAMBwXMtauafRP8MAAAAAAAAADIJbL+TfXkD//////////////////////v////////8AAAAAAAAAwPBegDz/V7Y/QQAAAAAAAAAUF8X57LBYQJR0lGKMBnZhbHVlc5RoGWgcSwCFlGgeh5RSlChLAUsJSwFLA4eUaF+JQ9ixqqqqqipfQLqqqqqqKl9AtqqqqqoqX0A3DMMwDMNeQFdXIF2BdF5A5BVe4RVePkDhtm3btu1bQFl6ZumZpTFABUZgBEZgNkAAAAAAAAAAANOrV69evS5AAAAAAAAAAADhtm3btu1bQHUj1Y1UNwJABUZgBEZgNkBIkiRJkiQtQAAAAAAAAAAAchzHcRzHNECXJEmSJElYQHUj1Y1UNwJAKpmSKZmS+T+qqqqqqqomQL64xuIaC1pAdD/3cz/3H0B6nud5nuf5P1JsSrEpxQZANyVTMiWTV0CUdJRidWKMEF9za2xlYXJuX3ZlcnNpb26UjAUxLjIuMpR1Yi4\u003d","decisionTreeInText":"|--- blood_pressure_diastolic \u003c\u003d 93.50\n| |--- bmi_category.Normal \u003c\u003d 0.50\n| | |--- blood_pressure_systolic \u003c\u003d 128.50\n| | | |--- class: None\n| | |--- blood_pressure_systolic \u003e 128.50\n| | | |--- daily_steps \u003c\u003d 5600.00\n| | | | |--- class: Sleep Apnea\n| | | |--- daily_steps \u003e 5600.00\n| | | | |--- class: Insomnia\n| |--- bmi_category.Normal \u003e 0.50\n| | |--- class: None\n|--- blood_pressure_diastolic \u003e 93.50\n| |--- class: Sleep Apnea\n","uniqueLabels":["Insomnia","None","Sleep Apnea"],"confusionMatrix":[[60,7,10],[4,210,5],[1,5,72]],"dataColumnNames":["person_id","gender","age","occupation","sleep_duration","quality_of_sleep","physical_activity_level","stress_level","bmi_category","blood_pressure_systolic","blood_pressure_diastolic","heart_rate","daily_steps","sleep_disorder"],"expandedColumnNames":["gender.Female","age","occupation.Accountant","occupation.Doctor","occupation.Engineer","occupation.Lawyer","occupation.Manager","occupation.Nurse","occupation.Sales Representative","occupation.Salesperson","occupation.Scientist","occupation.Software Engineer","sleep_duration","quality_of_sleep","physical_activity_level","stress_level","bmi_category.Normal","bmi_category.Normal Weight","bmi_category.Obese","blood_pressure_systolic","blood_pressure_diastolic","heart_rate","daily_steps"],"dataColumnTypes":{"occupation":"X_STR_CATEGORICAL","blood_pressure_diastolic":"X_NUMERIC","gender":"X_STR_CATEGORICAL","heart_rate":"X_NUMERIC","blood_pressure_systolic":"X_NUMERIC","stress_level":"X_NUMERIC","daily_steps":"X_NUMERIC","physical_activity_level":"X_NUMERIC","bmi_category":"X_STR_CATEGORICAL","sleep_duration":"X_NUMERIC","quality_of_sleep":"X_NUMERIC","sleep_disorder":"Y_STR_CATEGORICAL","age":"X_NUMERIC","person_id":"ID_NUM"},"categoricalVariableValues":{"bmi_category":["Normal","Normal Weight","Obese","Overweight"],"gender":["Female","Male"],"occupation":["Accountant","Doctor","Engineer","Lawyer","Manager","Nurse","Sales Representative","Salesperson","Scientist","Software Engineer","Teacher"]},"modelVersion":"1.0.0-20230821"}' as decision_tree_model, count(*) as record_count from log ), sleep_health_data as ( select 1 as person_id, 'Male' as gender, 27 as age, 'Software Engineer' as occupation, 6.1 as sleep_duration, 6 as quality_of_sleep, 42 as physical_activity_level, 6 as stress_level, 'Overweight' as bmi_category, 126 as blood_pressure_systolic, 83 as blood_pressure_diastolic, 77 as heart_rate, 4200 as daily_steps, 'None' as sleep_disorder union all select 2 as person_id, 'Male' as gender, 28 as age, 'Doctor' as occupation, 6.2 as sleep_duration, 6 as quality_of_sleep, 60 as physical_activity_level, 8 as stress_level, 'Normal' as bmi_category, 125 as blood_pressure_systolic, 80 as blood_pressure_diastolic, 75 as heart_rate, 10000 as daily_steps, 'None' as sleep_disorder union all select 3 as person_id, 'Male' as gender, 28 as age, 'Doctor' as occupation, 6.2 as sleep_duration, 6 as quality_of_sleep, 60 as physical_activity_level, 8 as stress_level, 'Normal' as bmi_category, 125 as blood_pressure_systolic, 80 as blood_pressure_diastolic, 75 as heart_rate, 10000 as daily_steps, 'None' as sleep_disorder union all select 4 as person_id, 'Male' as gender, 28 as age, 'Sales Representative' as occupation, 5.9 as sleep_duration, 4 as quality_of_sleep, 30 as physical_activity_level, 8 as stress_level, 'Obese' as bmi_category, 140 as blood_pressure_systolic, 90 as blood_pressure_diastolic, 85 as heart_rate, 3000 as daily_steps, 'Sleep Apnea' as sleep_disorder union all select 5 as person_id, 'Male' as gender, 28 as age, 'Sales Representative' as occupation, 5.9 as sleep_duration, 4 as quality_of_sleep, 30 as physical_activity_level, 8 as stress_level, 'Obese' as bmi_category, 140 as blood_pressure_systolic, 90 as blood_pressure_diastolic, 85 as heart_rate, 3000 as daily_steps, 'Sleep Apnea' as sleep_disorder union all select 6 as person_id, 'Male' as gender, 28 as age, 'Software Engineer' as occupation, 5.9 as sleep_duration, 4 as quality_of_sleep, 30 as physical_activity_level, 8 as stress_level, 'Obese' as bmi_category, 140 as blood_pressure_systolic, 90 as blood_pressure_diastolic, 85 as heart_rate, 3000 as daily_steps, 'Insomnia' as sleep_disorder union all select 7 as person_id, 'Male' as gender, 29 as age, 'Teacher' as occupation, 6.3 as sleep_duration, 6 as quality_of_sleep, 40 as physical_activity_level, 7 as stress_level, 'Obese' as bmi_category, 140 as blood_pressure_systolic, 90 as blood_pressure_diastolic, 82 as heart_rate, 3500 as daily_steps, 'Insomnia' as sleep_disorder union all select 8 as person_id, 'Male' as gender, 29 as age, 'Doctor' as occupation, 7.8 as sleep_duration, 7 as quality_of_sleep, 75 as physical_activity_level, 6 as stress_level, 'Normal' as bmi_category, 120 as blood_pressure_systolic, 80 as blood_pressure_diastolic, 70 as heart_rate, 8000 as daily_steps, 'None' as sleep_disorder union all select 9 as person_id, 'Male' as gender, 29 as age, 'Doctor' as occupation, 7.8 as sleep_duration, 7 as quality_of_sleep, 75 as physical_activity_level, 6 as stress_level, 'Normal' as bmi_category, 120 as blood_pressure_systolic, 80 as blood_pressure_diastolic, 70 as heart_rate, 8000 as daily_steps, 'None' as sleep_disorder union all select 10 as person_id, 'Male' as gender, 29 as age, 'Doctor' as occupation, 7.8 as sleep_duration, 7 as quality_of_sleep, 75 as physical_activity_level, 6 as stress_level, 'Normal' as bmi_category, 120 as blood_pressure_systolic, 80 as blood_pressure_diastolic, 70 as heart_rate, 8000 as daily_steps, 'None' as sleep_disorder union all select 11 as person_id, 'Male' as gender, 29 as age, 'Doctor' as occupation, 6.1 as sleep_duration, 6 as quality_of_sleep, 30 as physical_activity_level, 8 as stress_level, 'Normal' as bmi_category, 120 as blood_pressure_systolic, 80 as blood_pressure_diastolic, 70 as heart_rate, 8000 as daily_steps, 'None' as sleep_disorder union all select 12 as person_id, 'Male' as gender, 29 as age, 'Doctor' as occupation, 7.8 as sleep_duration, 7 as quality_of_sleep, 75 as physical_activity_level, 6 as stress_level, 'Normal' as bmi_category, 120 as blood_pressure_systolic, 80 as blood_pressure_diastolic, 70 as heart_rate, 8000 as daily_steps, 'None' as sleep_disorder union all select 13 as person_id, 'Male' as gender, 29 as age, 'Doctor' as occupation, 6.1 as sleep_duration, 6 as quality_of_sleep, 30 as physical_activity_level, 8 as stress_level, 'Normal' as bmi_category, 120 as blood_pressure_systolic, 80 as blood_pressure_diastolic, 70 as heart_rate, 8000 as daily_steps, 'None' as sleep_disorder union all select 14 as person_id, 'Male' as gender, 29 as age, 'Doctor' as occupation, 6 as sleep_duration, 6 as quality_of_sleep, 30 as physical_activity_level, 8 as stress_level, 'Normal' as bmi_category, 120 as blood_pressure_systolic, 80 as blood_pressure_diastolic, 70 as heart_rate, 8000 as daily_steps, 'None' as sleep_disorder union all select 15 as person_id, 'Male' as gender, 29 as age, 'Doctor' as occupation, 6 as sleep_duration, 6 as quality_of_sleep, 30 as physical_activity_level, 8 as stress_level, 'Normal' as bmi_category, 120 as blood_pressure_systolic, 80 as blood_pressure_diastolic, 70 as heart_rate, 8000 as daily_steps, 'None' as sleep_disorder union all select 16 as person_id, 'Male' as gender, 29 as age, 'Doctor' as occupation, 6 as sleep_duration, 6 as quality_of_sleep, 30 as physical_activity_level, 8 as stress_level, 'Normal' as bmi_category, 120 as blood_pressure_systolic, 80 as blood_pressure_diastolic, 70 as heart_rate, 8000 as daily_steps, 'None' as sleep_disorder union all select 17 as person_id, 'Female' as gender, 29 as age, 'Nurse' as occupation, 6.5 as sleep_duration, 5 as quality_of_sleep, 40 as physical_activity_level, 7 as stress_level, 'Normal Weight' as bmi_category, 132 as blood_pressure_systolic, 87 as blood_pressure_diastolic, 80 as heart_rate, 4000 as daily_steps, 'Sleep Apnea' as sleep_disorder union all select 18 as person_id, 'Male' as gender, 29 as age, 'Doctor' as occupation, 6 as sleep_duration, 6 as quality_of_sleep, 30 as physical_activity_level, 8 as stress_level, 'Normal' as bmi_category, 120 as blood_pressure_systolic, 80 as blood_pressure_diastolic, 70 as heart_rate, 8000 as daily_steps, 'Sleep Apnea' as sleep_disorder union all select 19 as person_id, 'Female' as gender, 29 as age, 'Nurse' as occupation, 6.5 as sleep_duration, 5 as quality_of_sleep, 40 as physical_activity_level, 7 as stress_level, 'Normal Weight' as bmi_category, 132 as blood_pressure_systolic, 87 as blood_pressure_diastolic, 80 as heart_rate, 4000 as daily_steps, 'Insomnia' as sleep_disorder union all select 20 as person_id, 'Male' as gender, 30 as age, 'Doctor' as occupation, 7.6 as sleep_duration, 7 as quality_of_sleep, 75 as physical_activity_level, 6 as stress_level, 'Normal' as bmi_category, 120 as blood_pressure_systolic, 80 as blood_pressure_diastolic, 70 as heart_rate, 8000 as daily_steps, 'None' as sleep_disorder ) select gm.group_id, nid.person_id, decision_tree_predict( gm.decision_tree_model, array[cast(person_id as varchar), cast(gender as varchar), cast(age as varchar), cast(occupation as varchar), cast(sleep_duration as varchar), cast(quality_of_sleep as varchar), cast(physical_activity_level as varchar), cast(stress_level as varchar), cast(bmi_category as varchar), cast(blood_pressure_systolic as varchar), cast(blood_pressure_diastolic as varchar), cast(heart_rate as varchar), cast(daily_steps as varchar)]) as predicted_value from model as gm cross join sleep_health_data as nid order by gm.group_id, nid.person_id limit 10000Hasil kueri dan analisis
Bidang
predicted_valuemenunjukkan kelas ke mana variabel masukan yang ditentukan oleh parameterinput_variable_arraytermasuk.group_id
person_id
predicted_value
G1
4
Sleep Apnea
G1
5
Sleep Apnea
G1
6
Sleep Apnea
...
...
...