All Products
Search
Document Center

PolarDB:Mathematical functions and operators

Last Updated:Jul 23, 2024

This topic describes the mathematical functions and operators that are supported by PolarDB for Oracle.

Mathematical operators are provided for many Oracle types. For types without standard mathematical conventions such as the date or time type, the actual behavior of these types are described in subsequent sections.

The following table describes the mathematical operators that are available for standard numeric types. Unless otherwise specified, operators shown as accepting numeric_type are available for the smallint, integer, bigint, numeric, real, and double precision types. Operators shown as accepting integral_type are available for the smallint, integer, and bigint types. Except where noted, each form of an operator returns the same data type as its argument. Calls involving multiple argument data types, such as integer + numeric, are resolved by using the type appearing later in these lists.

Mathematical operators

numeric_type + numeric_typenumeric_type

Addition

2 + 35

+ numeric_typenumeric_type

Unary plus (no operation)

+ 3.53.5

numeric_type - numeric_typenumeric_type

Subtraction

2 - 3-1

- numeric_typenumeric_type

Negation

- (-4)4

numeric_type * numeric_typenumeric_type

Multiplication

2 * 36

numeric_type / numeric_typenumeric_type

Division (for integral types, division truncates the result towards zero)

5.0 / 22.5000000000000000

5 / 22

(-5) / 2-2

numeric_type % numeric_typenumeric_type

Modulo (remainder); available for smallint, integer, bigint, and numeric

5 % 41

numeric ^ numericnumeric

double precision ^ double precisiondouble precision

Exponentiation (unlike typical mathematical practice, multiple uses of ^ associate left to right by default)

2 ^ 38

2 ^ 3 ^ 3512

|/ double precisiondouble precision

Square root

|/ 25.05

||/ double precisiondouble precision

Cube root

||/ 64.04

bigint !numeric

Factorial (deprecated and replaced with factorial())

5 !120

!! bigintnumeric

Factorial that is used as prefix operator (deprecated and replaced with factorial())

!! 5120

@ numeric_typenumeric_type

Absolute value

@ -5.05

integral_type & integral_typeintegral_type

Bitwise AND

91 & 1511

integral_type | integral_typeintegral_type

Bitwise OR

32 | 335

integral_type # integral_typeintegral_type

Bitwise exclusive OR

17 # 520

~ integral_typeintegral_type

Bitwise NOT

~1-2

integral_type << integerintegral_type

Bitwise shift left

1 << 416

integral_type >> integerintegral_type

Bitwise shift right

8 >> 22

The following table describes the available mathematical functions. Many of these functions are provided in multiple forms with different argument types. Except where noted, any given form of a function returns the same data type as its argument. Cross-type cases are resolved in the same way as explained above for operators. The functions working with double precision data are mostly implemented on the top of the C library in the host system. Therefore, accuracy and behavior in boundary cases vary based on host system.

Mathematical functions

abs ( numeric_type ) → numeric_type

Absolute value

abs(-17.4)17.4

cbrt ( double precision ) → double precision

Cube root

cbrt(64.0)4

ceil ( numeric ) → numeric

ceil ( double precision ) → double precision

Nearest integer greater than or equal to the argument

ceil(42.2)43

ceil(-42.8)-42

ceiling ( numeric ) → numeric

ceiling ( double precision ) → double precision

Nearest integer greater than or equal to the argument (same as cell)

ceiling(95.3)96

degrees ( double precision ) → double precision

Convert radians to degrees

degrees(0.5)28.64788975654116

div ( y numeric, x numeric ) → numeric

Integer quotient of y/x (truncates towards zero)

div(9,4)2

exp ( numeric ) → numeric

exp ( double precision ) → double precision

Exponential (e raised to the given power)

exp(1.0)2.7182818284590452

factorial ( bigint ) → numeric

Factorial

factorial(5)120

floor ( numeric ) → numeric

floor ( double precision ) → double precision

Nearest integer less than or equal to the argument

floor(42.8)42

floor(-42.8)-43

gcd ( numeric_type, numeric_type ) → numeric_type

Greatest common divisor (the largest positive number that divides both inputs without remainder). This function returns 0 if both inputs are zero. This function is available for integer, bigint, and numeric.

gcd(1071, 462)21

lcm ( numeric_type, numeric_type ) → numeric_type

Least common multiple (the smallest strictly positive number that is an integral multiple of both inputs). This function returns 0 if either input is zero. This function is available for integer, bigint, and numeric.

lcm(1071, 462)23562

ln ( numeric ) → numeric

ln ( double precision ) → double precision

Natural logarithm

ln(2.0)0.6931471805599453

log ( numeric ) → numeric

log ( double precision ) → double precision

Base 10 logarithm

log(100)2

log10 ( numeric ) → numeric

log10 ( double precision ) → double precision

Base 10 logarithm (same as log)

log10(1000)3

log ( b numeric, x numeric ) → numeric

Logarithm of x to base b

log(2.0, 64.0)6.0000000000

min_scale ( numeric ) → integer

Minimum scale (number of fractional decimal digits) required to represent the given value precisely

min_scale(8.4100)2

mod ( y numeric_type, x numeric_type ) → numeric_type

Remainder of y/x, available for smallint, integer, bigint, and numeric.

mod(9,4)1

pi ( ) → double precision

Approximate value of π

pi()3.141592653589793

power ( a numeric, b numeric ) → numeric

power ( a double precision, b double precision ) → double precision

a raised to the power of b

power(9, 3)729

radians ( double precision ) → double precision

Convert degrees to radians

radians(45.0)0.7853981633974483

round ( numeric ) → numeric

round ( double precision ) → double precision

Round to nearest integer

round(42.4)42

round ( v numeric, s integer ) → numeric

Round v to s decimal places

round(42.4382, 2)42.44

scale ( numeric ) → integer

Scale of the argument (number of decimal digits in the fractional part)

scale(8.4100)4

sign ( numeric ) → numeric

sign ( double precision ) → double precision

Sign of the argument (-1, 0, or +1)

sign(-8.4)-1

sqrt ( numeric ) → numeric

sqrt ( double precision ) → double precision

Square root

sqrt(2)1.4142135623730951

trim_scale ( numeric ) → numeric

Reduce the scale of the argument (number of fractional decimal digits) by removing trailing zeroes

trim_scale(8.4100)8.41

trunc ( numeric ) → numeric

trunc ( double precision ) → double precision

Truncate to integer (towards zero)

trunc(42.8)42

trunc(-42.8)-42

trunc ( v numeric, s integer ) → numeric

Truncate v to s decimal places

trunc(42.4382, 2)42.43

width_bucket ( operand numeric, low numeric, high numeric, count integer ) → integer

width_bucket ( operand double precision, low double precision, high double precision, count integer ) → integer

Return the number of the bucket in which operand falls in a histogram having count equal-width buckets spanning the range from low to high. 0 or count 1 is returned for an input outside that range.

width_bucket(5.35, 0.024, 10.06, 5)3

width_bucket ( operand anyelement, thresholds anyarray ) → integer

Return the number of the bucket in which operand falls in a given array listing the lower bounds of the buckets. 0 is returned for an input less than the first lower bound value. operand and array elements can be of any type having standard comparison operators. Elements in the thresholds array must be sorted with the smallest value at the beginning. Otherwise, unexpected results may be returned.

width_bucket(now(), array['yesterday', 'today', 'tomorrow']::timestamptz[])2

The following table describes the functions that are used to generate random numbers.

Random functions

random ( ) → double precision

Return a random value that is greater than or equal to 0.0 but less than 1.0.

random()0.897124072839091

setseed ( double precision ) → void

Set the seed value for subsequent calls on the random() function. Argument must fall within the range of -1.0 to 1.0, including the boundary value.

setseed(0.12345)

The random() function uses a simple linear conjugate algorithm. It is fast but not suitable for cryptography applications. For more information about a more secure alternative, see the pgcrypto module. If the setseed() function is called, results returned for a series of subsequent calls on the random() function within the current session can be replicated by re-issuing setseed() with the same argument.

The following table describes the available trigonometric functions. Each of these functions comes in two variants. One variant measures angles in radians, and the other measures angles in degrees.

Trigonometric functions

acos ( double precision ) → double precision

Inverse cosine, result in radians

acos(1)0

acosd ( double precision ) → double precision

Inverse cosine, result in degrees

acosd(0.5)60

asin ( double precision ) → double precision

Inverse sine, result in radians

asin(1)1.5707963267948966

asind ( double precision ) → double precision

Inverse sine, result in degrees

asind(0.5)30

atan ( double precision ) → double precision

Inverse tangent, result in radians

atan(1)0.7853981633974483

atand ( double precision ) → double precision

Inverse tangent, result in degrees

atand(1)45

atan2 ( y double precision, x double precision ) → double precision

Inverse tangent of y/x, result in radians

atan2(1,0)1.5707963267948966

atan2d ( y double precision, x double precision ) → double precision

Inverse tangent of y/x, result in degrees

atan2d(1,0)90

cos ( double precision ) → double precision

Cosine, argument in radians

cos(0)1

cosd ( double precision ) → double precision

Cosine, argument in degrees

cosd(60)0.5

cot ( double precision ) → double precision

Cotangent, argument in radians

cot(0.5)1.830487721712452

cotd ( double precision ) → double precision

Cotangent, argument in degrees

cotd(45)1

sin ( double precision ) → double precision

Sine, argument in radians

sin(1)0.8414709848078965

sind ( double precision ) → double precision

Sine, argument in degrees

sind(30)0.5

tan ( double precision ) → double precision

Tangent, argument in radians

tan(1)1.5574077246549023

tand ( double precision ) → double precision

Tangent, argument in degrees

tand(45)1

Important

Another way to work with angles measured in degrees is to use the unit transformation functions shown earlier: radians() and degrees(). However, to avoid round-off error for special cases such as sind(30), we recommend that you use degree-based trigonometric functions.

The following table describes the available hyperbolic functions.

Hyperbolic functions

sinh ( double precision ) → double precision

Hyperbolic sine

sinh(1)1.1752011936438014

cosh ( double precision ) → double precision

Hyperbolic cosine

cosh(0)1

tanh ( double precision ) → double precision

Hyperbolic tangent

tanh(1)0.7615941559557649

asinh ( double precision ) → double precision

Inverse hyperbolic sine

asinh(1)0.881373587019543

acosh ( double precision ) → double precision

Inverse hyperbolic cosine

acosh(1)0

atanh ( double precision ) → double precision

Inverse hyperbolic tangent

atanh(0.5)0.5493061443340548

PEMAINDER

Description

This function is used to return the remainder of n1/n2.

Syntax

PEMAINDER(n1,n2)

Parameters

Parameter

Description

n1

The dividend, which is an expression for the NUMBER, FLOAT, BINARY_FLOAT, and BINARY_DOUBLE numeric types.

n2

The divisor, which is an expression for the NUMBER, FLOAT, BINARY_FLOAT, and BINARY_DOUBLE numeric types and cannot be 0.

Data type of return values

The return type is the same as the data type of the argument that has higher numeric precedence.

Examples

SELECT REMAINDER(3.5,1);
 remainder 
-----------
      -0.5