本文以查询和分析网站日志为例,帮助您快速上手查询和分析操作。

前提条件

已采集到网站访问日志。更多信息,请参见 使用完整正则模式采集日志

步骤1:配置索引

  1. 登录日志服务控制台
  2. Project列表区域,单击目标Project。
  3. 日志存储 > 日志库页签中,单击目标Logstore。
  4. 在Logstore的查询和分析页面,单击页面右上角的查询分析属性 > 属性
    如果您还未开启索引,请单击页面右上角的 开启索引
  5. 配置字段索引。
    您可以手动逐条配置索引,也可以单击 自动生成索引,日志服务会根据预览数据中的第一条日志自动配置索引。
    说明
    • 配置索引后,只对新写入的数据生效。如果您要查询历史数据,请使用重建索引功能。具体操作,请参见重建索引
    • 如果您要使用分析功能,必须在配置索引时打开对应字段的统计功能。
    • 日志服务默认已为部分保留字段开启索引。更多信息,请参见保留字段
    字段索引
  6. 单击确定

步骤2:查询日志

您可以在Logstore的查询和分析页面,输入查询语句,选择时间范围,单击 查找/分析,进行日志查询查找。
说明 日志服务查询和分析语句格式为 查询语句|分析语句。查询语句可单独使用,分析语句必须与查询语句一起使用。即分析功能是基于查询结果或全量数据进行的。
  • 查询包含Chrome的日志。
    Chrome
  • 查询请求时间大于60秒的日志。
    request_time > 60
  • 查询请求时间在60秒~120秒之间的日志。
    request_time in [60 120]
  • 查询GET请求成功(状态码为200~299)的日志。
    request_method : GET and status in [200 299]
  • 查询request_uri字段值为/request/path-2/file-2的日志。
    request_uri:/request/path-2/file-2

步骤3:分析日志

您可以在Logstore的查询和分析页面,输入查询和分析语句,选择时间范围,单击 查找/分析,进行日志查询和分析操作。
说明 执行查询和分析语句后,默认只返回100条结果,您可以使用LIMIT语句控制返回结果数量。更多信息,请参见 LIMIT语法
  • 统计网站访问PV。

    使用COUNT函数统计网站访问PV。

    * | SELECT COUNT(*) AS PV
    访问pv
  • 根据每分钟的时间粒度,统计网站访问PV。

    使用date_trunc函数将时间对齐到每分钟并根据时间进行分组,然后使用COUNT函数计算每分钟的访问PV并根据时间排序。

    * | SELECT COUNT(*) as PV, date_trunc('minute', __time__) as time GROUP BY time ORDER BY time
    网站PV
  • 根据每5分钟的时间粒度,统计每个请求方法的请求次数。

    使用__time__ - __time__ %300将时间对齐到5分钟并根据时间进行分组,然后使用COUNT函数计算每5分钟的请求次数并根据时间进行排序。

    * | SELECT request_method, COUNT(*) as count, __time__ - __time__ %300 as time GROUP BY time, request_method ORDER BY time
    请求次数
  • 环比上周的网站访问PV。

    使用COUNT函数计算总PV数,再使用ts_compare函数得出本周与上周的环比。其中,website_log为Logstore名称。

    * | SELECT diff[1] as this_week, diff[2] as last_week, time FROM (SELECT ts_compare(pv, 604800) as diff, time FROM (SELECT COUNT(*) as pv, date_trunc('week', __time__) as time FROM website_log GROUP BY time ORDER BY time) GROUP BY time)
    环比上周PV
  • 统计客户端地址分布情况。

    使用ip_to_province函数获取IP地址对应的省份并根据省份进行分组,然后再使用COUNT函数计算每个地址出现的次数并根据次数进行排序。

    * | SELECT COUNT(*) as count, ip_to_province(client_ip) as address GROUP BY address ORDER BY count DESC
    客户端分布
  • 统计访问前10的请求路径。

    根据请求路径进行分组,然后使用COUNT函数计算每个路径的访问次数并根据访问次数排序。

    * | SELECT COUNT(*) as PV, request_uri as PATH GROUP BY PATH ORDER BY PV DESC LIMIT 10
    请求路径
  • 查询request_uri字段的值以%file-7结尾的日志。
    说明 在查询语句中,模糊查询的通配符星号(*)和问号(?)只能出现在词的中间或末尾。如果您要查询以某字符结尾的字段,可以在分析语句中使用LIKE语法进行查询。
    * | select * from website_log where request_uri like '%file-7'

    其中,website_log为Logstore名称。

    模糊查询
  • 统计请求路径访问情况。

    使用regexp_extract函数提取request_uri字段中的文件部分,然后再使用COUNT函数计算各个请求路径的访问次数。

    * | SELECT regexp_extract(request_uri, '.*\/(file.*)', 1) file, count(*) as count group by file
    分析uri
  • 查询request_uri字段中包含%abc%的日志。
    * | SELECT * where request_uri like '%/%abc/%%' escape '/'
    模糊查询

参考信息:日志样例

__tag__:__client_ip__:192.0.2.0
__tag__:__receive_time__:1609985755
__source__:198.51.100.0
__topic__:website_access_log
body_bytes_sent:4512
client_ip:198.51.100.10
host:example1.com
http_host:example2.com
http_user_agent:Mozilla/5.0 (Macintosh; U; PPC Mac OS X 10_5_8; ja-jp) AppleWebKit/533.20.25 (KHTML, like Gecko) Version/5.0.4 Safari/533.20.27
http_x_forwarded_for:198.51.100.1
instance_id:i-02
instance_name:instance-01
network_type:vlan
owner_id:%abc%-01
referer:example3.com
region:cn-shanghai
remote_addr:203.0.113.0
remote_user:neb
request_length:4103
request_method:POST
request_time:69
request_uri:/request/path-1/file-0
scheme:https
server_protocol:HTTP/2.0
slbid:slb-02
status:200
time_local:07/Jan/2021:02:15:53
upstream_addr:203.0.113.10
upstream_response_time:43
upstream_status:200
user_agent:Mozilla/5.0 (X11; Linux i686) AppleWebKit/534.33 (KHTML, like Gecko) Ubuntu/9.10 Chromium/13.0.752.0 Chrome/13.0.752.0 Safari/534.33
vip_addr:192.0.2.2
vpc_id:3db327b1****82df19818a72