Qwen-Coder 是專用於代碼任務的語言模型。通過 API,您可以調用模型執行代碼產生、代碼補全,並通過工具調用(Function Calling)與外部系統互動。
快速開始
前提條件
如果通過 SDK 進行調用,需安裝SDK,其中 DashScope Python SDK 版本不低於1.24.6,DashScope Java SDK 版本不低於 2.21.10。
以下樣本將示範如何調用 Qwen-Coder 模型編寫一個尋找質數的 Python 函數。
OpenAI相容
Python
請求樣本
import os
from openai import OpenAI
client = OpenAI(
# 新加坡和北京地區的API Key不同。擷取API Key:https://www.alibabacloud.com/help/zh/model-studio/get-api-key
# 若沒有配置環境變數,請用阿里雲百鍊API Key將下行替換為:api_key="sk-xxx",
api_key=os.getenv("DASHSCOPE_API_KEY"),
# 以下為新加坡地區base_url,若使用北京地區的模型,需將base_url替換為:https://dashscope.aliyuncs.com/compatible-mode/v1
base_url="https://dashscope-intl.aliyuncs.com/compatible-mode/v1",
)
completion = client.chat.completions.create(
# 此處以qwen3-coder-plus為例,可按需更換模型名稱。
model="qwen3-coder-plus",
messages=[
{'role': 'system', 'content': 'You are a helpful assistant.'},
{'role': 'user', 'content': '請編寫一個Python函數 find_prime_numbers,該函數接受一個整數 n 作為參數,並返回一個包含所有小於 n 的質數(素數)的列表。不要輸出非代碼的內容和Markdown的代碼塊。'}],
)
print(completion.choices[0].message.content)
返回結果
def find_prime_numbers(n):
if n <= 2:
return []
primes = []
for num in range(2, n):
is_prime = True
for i in range(2, int(num ** 0.5) + 1):
if num % i == 0:
is_prime = False
break
if is_prime:
primes.append(num)
return primesNode.js
請求樣本
import OpenAI from "openai";
const client = new OpenAI(
{
// 新加坡和北京地區的API Key不同。擷取API Key:https://www.alibabacloud.com/help/zh/model-studio/get-api-key
// 若沒有配置環境變數,請用百鍊API Key將下行替換為:apiKey: "sk-xxx",
apiKey: process.env.DASHSCOPE_API_KEY,
// 以下為新加坡地區base_url,若使用北京地區的模型,需將base_url替換為:https://dashscope.aliyuncs.com/compatible-mode/v1
baseURL: "https://dashscope-intl.aliyuncs.com/compatible-mode/v1"
}
);
async function main() {
const completion = await client.chat.completions.create({
model: "qwen3-coder-plus", //此處以qwen3-coder-plus為例,可按需更換模型名稱。
messages: [
{ role: "system", content: "You are a helpful assistant." },
{ role: "user", content: "請編寫一個Python函數 find_prime_numbers,該函數接受一個整數 n 作為參數,並返回一個包含所有小於 n 的質數(素數)的列表。不要輸出非代碼的內容和Markdown的代碼塊。" }
],
});
console.log(completion.choices[0].message.content);
}
main();返回結果
def find_prime_numbers(n):
if n <= 2:
return []
primes = []
for num in range(2, n):
is_prime = True
for i in range(2, int(num ** 0.5) + 1):
if num % i == 0:
is_prime = False
break
if is_prime:
primes.append(num)
return primescurl
請求樣本
以下為新加坡地區url,若使用北京地區的模型,需將url替換為:https://dashscope.aliyuncs.com/compatible-mode/v1/chat/completions
curl -X POST https://dashscope-intl.aliyuncs.com/compatible-mode/v1/chat/completions \
-H "Authorization: Bearer $DASHSCOPE_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "qwen3-coder-plus",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "請編寫一個Python函數 find_prime_numbers,該函數接受一個整數 n 作為參數,並返回一個包含所有小於 n 的質數(素數)的列表。不要輸出非代碼的內容和Markdown的代碼塊。"
}
]
}'返回結果
{
"choices": [
{
"message": {
"content": "def find_prime_numbers(n):\n if n <= 2:\n return []\n \n primes = []\n \n for num in range(2, n):\n is_prime = True\n for i in range(2, int(num ** 0.5) + 1):\n if num % i == 0:\n is_prime = False\n break\n if is_prime:\n primes.append(num)\n \n return primes",
"role": "assistant"
},
"finish_reason": "stop",
"index": 0,
"logprobs": null
}
],
"object": "chat.completion",
"usage": {
"prompt_tokens": 96,
"completion_tokens": 90,
"total_tokens": 186,
"prompt_tokens_details": {
"cached_tokens": 0
}
},
"created": 1761615592,
"system_fingerprint": null,
"model": "qwen3-coder-plus",
"id": "chatcmpl-3de690bd-ae7f-461d-8eb6-d65b0577e803"
}DashScope
Python
請求樣本
import dashscope
import os
# 以下為新加坡地區base_url,若使用北京地區的模型,需將base_url替換為:https://dashscope.aliyuncs.com/api/v1
dashscope.base_http_api_url = 'https://dashscope-intl.aliyuncs.com/api/v1'
messages = [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "請編寫一個Python函數 find_prime_numbers,該函數接受一個整數 n 作為參數,並返回一個包含所有小於 n 的質數(素數)的列表。不要輸出非代碼的內容和Markdown的代碼塊。"
}
]
response = dashscope.Generation.call(
# 新加坡地區和北京地區的API Key不同。擷取API Key:https://www.alibabacloud.com/help/zh/model-studio/get-api-key
# 若沒有配置環境變數,請用阿里雲百鍊API Key將下行替換為:api_key = "sk-xxx",
api_key=os.getenv("DASHSCOPE_API_KEY"),
# 此處以qwen3-coder-plus為例,可按需更換模型名稱。
model="qwen3-coder-plus",
messages=messages,
result_format="message"
)
if response.status_code == 200:
print(response.output.choices[0].message.content)
else:
print(f"HTTP返回碼:{response.status_code}")
print(f"錯誤碼:{response.code}")
print(f"錯誤資訊:{response.message}")返回結果
def find_prime_numbers(n):
if n <= 2:
return []
primes = []
for num in range(2, n):
is_prime = True
for i in range(2, int(num ** 0.5) + 1):
if num % i == 0:
is_prime = False
break
if is_prime:
primes.append(num)
return primesJava
請求樣本
import java.util.Arrays;
import com.alibaba.dashscope.aigc.generation.Generation;
import com.alibaba.dashscope.aigc.generation.GenerationResult;
import com.alibaba.dashscope.aigc.generation.GenerationParam;
import com.alibaba.dashscope.common.Message;
import com.alibaba.dashscope.common.Role;
import com.alibaba.dashscope.exception.ApiException;
import com.alibaba.dashscope.exception.InputRequiredException;
import com.alibaba.dashscope.exception.NoApiKeyException;
import com.alibaba.dashscope.protocol.Protocol;
public class Main {
public static GenerationResult callWithMessage()
throws NoApiKeyException, ApiException, InputRequiredException {
String apiKey = System.getenv("DASHSCOPE_API_KEY");
// 以下為新加坡地區base_url,若使用北京地區的模型,需將base_url替換為:https://dashscope.aliyuncs.com/api/v1
Generation gen = new Generation(Protocol.HTTP.getValue(), "https://dashscope-intl.aliyuncs.com/api/v1");
Message sysMsg = Message.builder()
.role(Role.SYSTEM.getValue())
.content("You are a helpful assistant.").build();
Message userMsg = Message.builder()
.role(Role.USER.getValue())
.content("請編寫一個Python函數 find_prime_numbers,該函數接受一個整數 n 作為參數,並返回一個包含所有小於 n 的質數(素數)的列表。不要輸出非代碼的內容和Markdown的代碼塊。").build();
// 此處以qwen3-coder-plus為例,可按需更換模型名稱。
GenerationParam param = GenerationParam.builder()
.apiKey(apiKey)
.model("qwen3-coder-plus")
.messages(Arrays.asList(sysMsg, userMsg))
.resultFormat(GenerationParam.ResultFormat.MESSAGE)
.build();
return gen.call(param);
}
public static void main(String[] args){
try {
GenerationResult result = callWithMessage();
System.out.println(result.getOutput().getChoices().get(0).getMessage().getContent());
} catch (ApiException | NoApiKeyException | InputRequiredException e) {
System.err.println("請求異常: " + e.getMessage());
e.printStackTrace();
}
}
}返回結果
def find_prime_numbers(n):
if n <= 2:
return []
primes = []
for num in range(2, n):
is_prime = True
for i in range(2, int(num ** 0.5) + 1):
if num % i == 0:
is_prime = False
break
if is_prime:
primes.append(num)
return primescurl
請求樣本
以下為新加坡地區url,若使用北京地區的模型,需將url替換為:https://dashscope.aliyuncs.com/api/v1/services/aigc/text-generation/generation
curl -X POST "https://dashscope-intl.aliyuncs.com/api/v1/services/aigc/text-generation/generation" \
-H "Authorization: Bearer $DASHSCOPE_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "qwen3-coder-plus",
"input":{
"messages":[
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "請編寫一個Python函數 find_prime_numbers,該函數接受一個整數 n 作為參數,並返回一個包含所有小於 n 的質數(素數)的列表。不要輸出非代碼的內容和Markdown的代碼塊。"
}
]
},
"parameters": {
"result_format": "message"
}
}'返回結果
{
"output": {
"choices": [
{
"message": {
"content": "def find_prime_numbers(n):\n if n <= 2:\n return []\n \n primes = []\n \n for num in range(2, n):\n is_prime = True\n for i in range(2, int(num ** 0.5) + 1):\n if num % i == 0:\n is_prime = False\n break\n if is_prime:\n primes.append(num)\n \n return primes",
"role": "assistant"
},
"finish_reason": "stop"
}
]
},
"usage": {
"total_tokens": 186,
"output_tokens": 90,
"input_tokens": 96,
"prompt_tokens_details": {
"cached_tokens": 0
}
},
"request_id": "b1b8d1f8-0d26-4651-a466-66eefa0e7c51"
}模型選型
Qwen-Coder 已升級至Qwen3系列,支援高達 100 萬 Tokens 的上下文視窗,提供多款模型,以滿足您在不同情境下對效能、響應速度和成本的差異化需求。
選型建議:
qwen3-coder-plus:代碼能力最強的模型,適用於產生複雜專案、深度代碼審查等高品質要求的任務。qwen3-coder-flash:速度更快,成本更低,是兼顧效能與成本的高性價比選擇,適用於對響應速度敏感的情境。
核心能力
流式輸出
為提升互動體驗並降低長耗時請求的逾時風險,您可以通過設定 stream=True 參數來啟用流式輸出。模型將以資料區塊(Chunk)的形式持續返回產生的內容,而非等待全部內容產生完畢後一次性返回。
OpenAI相容
Python
請求樣本
import os
from openai import OpenAI
client = OpenAI(
# 新加坡和北京地區的API Key不同。擷取API Key:https://www.alibabacloud.com/help/zh/model-studio/get-api-key
# 若沒有配置環境變數,請用阿里雲百鍊API Key將下行替換為:api_key="sk-xxx",
api_key=os.getenv("DASHSCOPE_API_KEY"),
# 以下為新加坡地區base_url,若使用北京地區的模型,需將base_url替換為:https://dashscope.aliyuncs.com/compatible-mode/v1
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)
completion = client.chat.completions.create(
model="qwen3-coder-plus",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "請編寫一個Python函數 find_prime_numbers,該函數接受一個整數 n 作為參數,並返回一個包含所有小於 n 的質數(素數)的列表。不要輸出非代碼的內容和Markdown的代碼塊。"}
],
stream=True,
# 在最後一個chunk中擷取本次請求的Token用量
stream_options={"include_usage": True}
)
content_parts = []
print("="*20+"回複內容"+"="*20)
for chunk in completion:
# 最後一個chunk不包含choices,但包含usage資訊
if chunk.choices:
# delta.content可能為None,使用`or ""`避免拼接時出錯
content = chunk.choices[0].delta.content or ""
print(content, end="", flush=True)
content_parts.append(content)
elif chunk.usage:
print("\n"+"="*20+"Token消耗"+"="*20)
print(f"輸入 Tokens: {chunk.usage.prompt_tokens}")
print(f"輸出 Tokens: {chunk.usage.completion_tokens}")
print(f"總計 Tokens: {chunk.usage.total_tokens}")
full_response = "".join(content_parts)
# 如需擷取完整響應字串,請取消下行注釋
# print(f"\n--- 完整回複 ---\n{full_response}")返回結果
====================回複內容====================
def find_prime_numbers(n):
if n <= 2:
return []
primes = []
for num in range(2, n):
is_prime = True
for i in range(2, int(num ** 0.5) + 1):
if num % i == 0:
is_prime = False
break
if is_prime:
primes.append(num)
return primes
====================Token消耗====================
輸入 Tokens: 66
輸出 Tokens: 89
總計 Tokens: 155Node.js
請求樣本
import OpenAI from "openai";
const client = new OpenAI(
{
// 新加坡和北京地區的API Key不同。擷取API Key:https://www.alibabacloud.com/help/zh/model-studio/get-api-key
// 若沒有配置環境變數,請用百鍊API Key將下行替換為:apiKey: "sk-xxx",
apiKey: process.env.DASHSCOPE_API_KEY,
// 以下是新加坡地區base_url,如果使用北京地區的模型,需要將base_url替換為:https://dashscope.aliyuncs.com/compatible-mode/v1
baseURL: "https://dashscope-intl.aliyuncs.com/compatible-mode/v1"
}
);
async function main() {
const stream = await client.chat.completions.create({
model: "qwen3-coder-plus",
messages: [
{ role: "system", content: "You are a helpful assistant." },
{ role: "user", content: "請編寫一個Python函數 find_prime_numbers,該函數接受一個整數 n 作為參數,並返回一個包含所有小於 n 的質數(素數)的列表。不要輸出非代碼的內容和Markdown的代碼塊。" },
],
stream: true,
// 在最後一個chunk中擷取本次請求的Token用量
stream_options: { include_usage: true },
});
const contentParts = [];
console.log("=".repeat(20) + "回複內容" + "=".repeat(20));
for await (const chunk of stream) {
// 最後一個chunk不包含choices,但包含usage資訊
if (chunk.choices && chunk.choices.length > 0) {
const content = chunk.choices[0]?.delta?.content || "";
process.stdout.write(content);
contentParts.push(content);
} else if (chunk.usage) {
// 請求結束,列印Token用量
console.log("\n"+"=".repeat(20) + "Token消耗" + "=".repeat(20));
console.log(`輸入 Tokens: ${chunk.usage.prompt_tokens}`);
console.log(`輸出 Tokens: ${chunk.usage.completion_tokens}`);
console.log(`總計 Tokens: ${chunk.usage.total_tokens}`);
}
}
const fullResponse = contentParts.join("");
// 如需擷取完整響應字串,請取消下行注釋
// console.log(`\n--- 完整回複 ---\n${fullResponse}`);
}
main();返回結果
====================回複內容====================
def find_prime_numbers(n):
if n <= 2:
return []
primes = []
for num in range(2, n):
is_prime = True
for i in range(2, int(num ** 0.5) + 1):
if num % i == 0:
is_prime = False
break
if is_prime:
primes.append(num)
return primes
====================Token消耗====================
輸入 Tokens: 66
輸出 Tokens: 89
總計 Tokens: 155curl
請求樣本
以下為新加坡地區url,若使用北京地區的模型,需將url替換為:https://dashscope.aliyuncs.com/compatible-mode/v1/chat/completions
curl -X POST https://dashscope-intl.aliyuncs.com/compatible-mode/v1/chat/completions \
-H "Authorization: Bearer $DASHSCOPE_API_KEY" \
-H "Content-Type: application/json" \
--no-buffer \
-d '{
"model": "qwen3-coder-plus",
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "請編寫一個Python函數 find_prime_numbers,該函數接受一個整數 n 作為參數,並返回一個包含所有小於 n 的質數(素數)的列表。不要輸出非代碼的內容和Markdown的代碼塊。"}
],
"stream": true,
"stream_options": {"include_usage": true}
}'返回結果
data: {"choices":[{"delta":{"content":"","role":"assistant"},"index":0,"logprobs":null,"finish_reason":null}],"object":"chat.completion.chunk","usage":null,"created":1763085409,"system_fingerprint":null,"model":"qwen3-coder-plus","id":"chatcmpl-61f94113-f29b-4f7d-9730-551749d40ef4"}
data: {"choices":[{"finish_reason":null,"logprobs":null,"delta":{"content":"def"},"index":0}],"object":"chat.completion.chunk","usage":null,"created":1763085409,"system_fingerprint":null,"model":"qwen3-coder-plus","id":"chatcmpl-61f94113-f29b-4f7d-9730-551749d40ef4"}
data: {"choices":[{"delta":{"content":" find_prime_numbers(n"},"finish_reason":null,"index":0,"logprobs":null}],"object":"chat.completion.chunk","usage":null,"created":1763085409,"system_fingerprint":null,"model":"qwen3-coder-plus","id":"chatcmpl-61f94113-f29b-4f7d-9730-551749d40ef4"}
......
data: {"choices":[{"delta":{"content":" primes"},"finish_reason":null,"index":0,"logprobs":null}],"object":"chat.completion.chunk","usage":null,"created":1763085409,"system_fingerprint":null,"model":"qwen3-coder-plus","id":"chatcmpl-61f94113-f29b-4f7d-9730-551749d40ef4"}
data: {"choices":[{"finish_reason":"stop","delta":{"content":""},"index":0,"logprobs":null}],"object":"chat.completion.chunk","usage":null,"created":1763085409,"system_fingerprint":null,"model":"qwen3-coder-plus","id":"chatcmpl-61f94113-f29b-4f7d-9730-551749d40ef4"}
data: {"choices":[],"object":"chat.completion.chunk","usage":{"prompt_tokens":66,"completion_tokens":89,"total_tokens":155,"prompt_tokens_details":{"cached_tokens":0}},"created":1763085409,"system_fingerprint":null,"model":"qwen3-coder-plus","id":"chatcmpl-61f94113-f29b-4f7d-9730-551749d40ef4"}
data: [DONE]DashScope
Python
請求樣本
import os
from http import HTTPStatus
import dashscope
from dashscope import Generation
# 以下為新加坡地區base_url,若使用北京地區的模型,需將base_url替換為:https://dashscope.aliyuncs.com/api/v1
dashscope.base_http_api_url = 'https://dashscope-intl.aliyuncs.com/api/v1'
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "請編寫一個Python函數 find_prime_numbers,該函數接受一個整數 n 作為參數,並返回一個包含所有小於 n 的質數(素數)的列表。不要輸出非代碼的內容和Markdown的代碼塊。"},
]
responses = Generation.call(
# 新加坡和北京地區的API Key不同。擷取API Key:https://www.alibabacloud.com/help/zh/model-studio/get-api-key
# 若沒有配置環境變數,請用百鍊API Key將下行替換為:api_key="sk-xxx",
api_key=os.getenv('DASHSCOPE_API_KEY'),
model="qwen3-coder-plus",
messages=messages,
result_format="message",
stream=True,
# 增量輸出,每個資料區塊僅包含新產生的內容
incremental_output=True,
)
content_parts = []
print("="*20+"回複內容"+"="*20+"\n", end="", flush=True)
for resp in responses:
if resp.status_code == HTTPStatus.OK:
content = resp.output.choices[0].message.content
print(content, end="", flush=True)
content_parts.append(content)
if resp.output.choices[0].finish_reason == "stop":
print("\n"+"=" * 20 + "Token消耗" + "=" * 20)
print(f"輸入 Tokens: {resp.usage.input_tokens}")
print(f"輸出 Tokens: {resp.usage.output_tokens}")
print(f"總計 Tokens: {resp.usage.total_tokens}")
else:
print(f"HTTP返回碼:{resp.status_code}")
print(f"錯誤碼:{resp.code}")
print(f"錯誤資訊:{resp.message}")
full_response = "".join(content_parts)
# 如需擷取完整響應字串,請取消下行注釋
# print(f"\n--- 完整回複 ---\n{full_response}")返回結果
====================回複內容====================
def find_prime_numbers(n):
if n <= 2:
return []
primes = []
for num in range(2, n):
is_prime = True
for i in range(2, int(num ** 0.5) + 1):
if num % i == 0:
is_prime = False
break
if is_prime:
primes.append(num)
return primes
====================Token消耗====================
輸入 Tokens: 66
輸出 Tokens: 89
總計 Tokens: 155Java
請求樣本
import com.alibaba.dashscope.aigc.generation.Generation;
import com.alibaba.dashscope.aigc.generation.GenerationParam;
import com.alibaba.dashscope.aigc.generation.GenerationResult;
import com.alibaba.dashscope.common.Message;
import com.alibaba.dashscope.common.Role;
import io.reactivex.Flowable;
import io.reactivex.schedulers.Schedulers;
import java.util.Arrays;
import java.util.concurrent.CountDownLatch;
import com.alibaba.dashscope.protocol.Protocol;
public class Main {
public static void main(String[] args) {
String apiKey = System.getenv("DASHSCOPE_API_KEY");
// 以下為新加坡地區base_url,若使用北京地區的模型,需將base_url替換為:https://dashscope.aliyuncs.com/api/v1
Generation gen = new Generation(Protocol.HTTP.getValue(), "https://dashscope-intl.aliyuncs.com/api/v1");
CountDownLatch latch = new CountDownLatch(1);
GenerationParam param = GenerationParam.builder()
.apiKey(apiKey)
.model("qwen3-coder-plus")
.messages(Arrays.asList(
Message.builder()
.role(Role.USER.getValue())
.content("請編寫一個Python函數 find_prime_numbers,該函數接受一個整數 n 作為參數,並返回一個包含所有小於 n 的質數(素數)的列表。不要輸出非代碼的內容和Markdown的代碼塊。")
.build()
))
.resultFormat(GenerationParam.ResultFormat.MESSAGE)
.incrementalOutput(true) // 開啟增量輸出,流式返回,每個資料區塊僅包含新產生的內容
.build();
try {
Flowable<GenerationResult> result = gen.streamCall(param);
StringBuilder fullContent = new StringBuilder();
System.out.println("====================回複內容====================");
result
.subscribeOn(Schedulers.io()) // IO線程執行請求
.observeOn(Schedulers.computation()) // 計算線程處理響應
.subscribe(
// onNext: 處理每個響應片段
message -> {
String content = message.getOutput().getChoices().get(0).getMessage().getContent();
String finishReason = message.getOutput().getChoices().get(0).getFinishReason();
// 輸出內容
System.out.print(content);
fullContent.append(content);
// 當 finishReason 不為 null 時,表示是最後一個 chunk,輸出用量資訊
if (finishReason != null && !"null".equals(finishReason)) {
System.out.println("\n====================Token消耗====================");
System.out.println("輸入 Tokens: " + message.getUsage().getInputTokens());
System.out.println("輸出 Tokens: " + message.getUsage().getOutputTokens());
System.out.println("總計 Tokens: " + message.getUsage().getTotalTokens());
}
System.out.flush(); // 立即重新整理輸出
},
// onError: 處理錯誤
error -> {
System.err.println("\n請求失敗: " + error.getMessage());
latch.countDown();
},
// onComplete: 完成回調
() -> {
System.out.println(); // 換行
// 如需擷取完整響應字串,請取消下行注釋
// System.out.println("完整響應: " + fullContent.toString());
latch.countDown();
}
);
// 主線程等待非同步任務完成
latch.await();
} catch (Exception e) {
System.err.println("請求異常: " + e.getMessage());
e.printStackTrace();
}
}
}返回結果
====================回複內容====================
def find_prime_numbers(n):
if n <= 2:
return []
primes = []
for num in range(2, n):
is_prime = True
for i in range(2, int(num ** 0.5) + 1):
if num % i == 0:
is_prime = False
break
if is_prime:
primes.append(num)
return primes
====================Token消耗====================
輸入 Tokens: 66
輸出 Tokens: 89
總計 Tokens: 155curl
請求樣本
以下為新加坡地區url,若使用北京地區的模型,需將url替換為:https://dashscope.aliyuncs.com/api/v1/services/aigc/text-generation/generation
curl -X POST https://dashscope-intl.aliyuncs.com/api/v1/services/aigc/text-generation/generation \
-H "Authorization: Bearer $DASHSCOPE_API_KEY" \
-H "Content-Type: application/json" \
-H "X-DashScope-SSE: enable" \
-d '{
"model": "qwen3-coder-plus",
"input":{
"messages":[
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "請編寫一個Python函數 find_prime_numbers,該函數接受一個整數 n 作為參數,並返回一個包含所有小於 n 的質數(素數)的列表。不要輸出非代碼的內容和Markdown的代碼塊。"
}
]
},
"parameters": {
"result_format": "message",
"incremental_output":true
}
}'返回結果
id:1
event:result
:HTTP_STATUS/200
data:{"output":{"choices":[{"message":{"content":"def","role":"assistant"},"finish_reason":"null"}]},"usage":{"total_tokens":67,"output_tokens":1,"input_tokens":66,"prompt_tokens_details":{"cached_tokens":0}},"request_id":"fadfc21b-4411-40d5-b143-8c3573284c42"}
id:2
event:result
:HTTP_STATUS/200
data:{"output":{"choices":[{"message":{"content":" find_prime_numbers(n","role":"assistant"},"finish_reason":"null"}]},"usage":{"total_tokens":71,"output_tokens":5,"input_tokens":66,"prompt_tokens_details":{"cached_tokens":0}},"request_id":"fadfc21b-4411-40d5-b143-8c3573284c42"}
id:3
event:result
:HTTP_STATUS/200
data:{"output":{"choices":[{"message":{"content":"):\n if n","role":"assistant"},"finish_reason":"null"}]},"usage":{"total_tokens":75,"output_tokens":9,"input_tokens":66,"prompt_tokens_details":{"cached_tokens":0}},"request_id":"fadfc21b-4411-40d5-b143-8c3573284c42"}
...
id:26
event:result
:HTTP_STATUS/200
data:{"output":{"choices":[{"message":{"content":" primes","role":"assistant"},"finish_reason":"null"}]},"usage":{"total_tokens":155,"output_tokens":89,"input_tokens":66,"prompt_tokens_details":{"cached_tokens":0}},"request_id":"fadfc21b-4411-40d5-b143-8c3573284c42"}
id:27
event:result
:HTTP_STATUS/200
data:{"output":{"choices":[{"message":{"content":"","role":"assistant"},"finish_reason":"stop"}]},"usage":{"total_tokens":155,"output_tokens":89,"input_tokens":66,"prompt_tokens_details":{"cached_tokens":0}},"request_id":"fadfc21b-4411-40d5-b143-8c3573284c42"}調用工具(Function Calling)
為使模型能夠與外部環境互動(例如,讀寫檔案、調用 API、操作資料庫),您可以為其提供一系列工具。模型會根據您的指令,決定是否以及如何調用這些工具。詳情請參見Function Calling。
完整的工具調用流程包括:
定義工具並發起請求:在請求中定義好工具列表,並向模型提出需要藉助工具完成的任務。
執行工具:解析模型返回的
tool_calls,並調用您本地已實現的對應工具函數來執行任務。返回執行結果:將工具的執行結果封裝成特定格式,再次發送給模型,讓其基於結果完成最終任務。
以下樣本將示範如何引導模型產生代碼,並使用 write_file 工具將其儲存到本地檔案。
OpenAI相容
Python
請求樣本
import os
import json
from openai import OpenAI
client = OpenAI(
# 新加坡和北京地區的API Key不同。擷取API Key:https://www.alibabacloud.com/help/zh/model-studio/get-api-key
# 若沒有配置環境變數,請用阿里雲百鍊API Key將下行替換為:api_key="sk-xxx",
api_key=os.getenv("DASHSCOPE_API_KEY"),
# 以下為新加坡地區base_url,若使用北京地區的模型,需將base_url替換為:https://dashscope.aliyuncs.com/compatible-mode/v1
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)
tools = [
{
"type": "function",
"function": {
"name": "write_file",
"description": "將內容寫入指定檔案,若檔案不存在則建立。",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "目標檔案的相對或絕對路徑"
},
"content": {
"type": "string",
"description": "寫入檔案的字串內容"
}
},
"required": ["path", "content"]
}
}
}
]
# 工具函數實現
def write_file(path: str, content: str) -> str:
"""寫入檔案內容"""
try:
# 確保目錄存在
os.makedirs(os.path.dirname(path),
exist_ok=True) if os.path.dirname(path) else None
with open(path, 'w', encoding='utf-8') as f:
f.write(content)
return f"成功: 檔案 '{path}' 已寫入"
except Exception as e:
return f"錯誤: 寫入檔案時發生異常 - {str(e)}"
messages = [{"role": "user", "content": "寫一個python代碼,快速排序,命名為quick_sort.py"}]
completion = client.chat.completions.create(
model="qwen3-coder-plus",
messages=messages,
tools=tools
)
assistant_output = completion.choices[0].message
if assistant_output.content is None:
assistant_output.content = ""
messages.append(assistant_output)
# 如果不需要調用工具,直接輸出內容
if assistant_output.tool_calls is None:
print(f"無需調用工具,直接回複:{assistant_output.content}")
else:
# 進入工具調用迴圈
while assistant_output.tool_calls is not None:
for tool_call in assistant_output.tool_calls:
tool_call_id = tool_call.id
func_name = tool_call.function.name
arguments = json.loads(tool_call.function.arguments)
print(f"正在調用工具 [{func_name}],參數:{arguments}")
# 執行工具
tool_result = write_file(**arguments)
# 構造工具返回資訊
tool_message = {
"role": "tool",
"tool_call_id": tool_call_id,
"content": tool_result,
}
print(f"工具返回:{tool_message['content']}")
messages.append(tool_message)
# 再次調用模型,擷取總結後的自然語言回複
response = client.chat.completions.create(
model="qwen3-coder-plus",
messages=messages,
tools=tools
)
assistant_output = response.choices[0].message
if assistant_output.content is None:
assistant_output.content = ""
messages.append(assistant_output)
print(f"模型最終回複:{assistant_output.content}")
返回結果
正在調用工具 [write_file],參數:{'content': 'def quick_sort(arr):\\n if len(arr) <= 1:\\n return arr\\n pivot = arr[len(arr) // 2]\\n left = [x for x in arr if x < pivot]\\n middle = [x for x in arr if x == pivot]\\n right = [x for x in arr if x > pivot]\\n return quick_sort(left) + middle + quick_sort(right)\\n\\nif __name__ == \\"__main__\\":\\n example_list = [3, 6, 8, 10, 1, 2, 1]\\n print(\\"Original list:\\", example_list)\\n sorted_list = quick_sort(example_list)\\n print(\\"Sorted list:\\", sorted_list)', 'path': 'quick_sort.py'}
工具返回:成功: 檔案 'quick_sort.py' 已寫入
模型最終回複:好的,已經為你建立了名為 `quick_sort.py` 的檔案,其中包含了快速排序的 Python 實現。你可以運行這個檔案查看樣本輸出。如果需要進一步修改或解釋,請告訴我!Node.js
請求樣本
import OpenAI from "openai";
import fs from "fs/promises";
import path from "path";
const client = new OpenAI({
// 新加坡和北京地區的API Key不同。擷取API Key:https://www.alibabacloud.com/help/zh/model-studio/get-api-key
// 若沒有配置環境變數,請用百鍊API Key將下行替換為:apiKey: "sk-xxx",
apiKey: process.env.DASHSCOPE_API_KEY,
// 以下為新加坡地區base_url,若使用北京地區的模型,需將base_url替換為:https://dashscope.aliyuncs.com/compatible-mode/v1
baseURL: "https://dashscope-intl.aliyuncs.com/compatible-mode/v1"
});
const tools = [
{
"type": "function",
"function": {
"name": "write_file",
"description": "將內容寫入指定檔案,若檔案不存在則建立。",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "目標檔案的相對或絕對路徑"
},
"content": {
"type": "string",
"description": "寫入檔案的字串內容"
}
},
"required": ["path", "content"]
}
}
}
];
// 工具函數實現
async function write_file(filePath, content) {
try {
// 為安全起見,檔案寫入功能已預設禁用,如需使用請取消注釋並確保路徑安全
// const dir = path.dirname(filePath);
// if (dir) {
// await fs.mkdir(dir, { recursive: true });
// }
// await fs.writeFile(filePath, content, "utf-8");
return `成功: 檔案 '${filePath}' 已寫入`;
} catch (error) {
return `錯誤: 寫入檔案時發生異常 - ${error.message}`;
}
}
const messages = [{"role": "user", "content": "寫一個python代碼,快速排序,命名為quick_sort.py"}];
async function main() {
const completion = await client.chat.completions.create({
model: "qwen3-coder-plus",
messages: messages,
tools: tools
});
let assistant_output = completion.choices[0].message;
// 確保 content 不是 null
if (!assistant_output.content) assistant_output.content = "";
messages.push(assistant_output);
// 如果不需要調用工具,直接輸出內容
if (!assistant_output.tool_calls) {
console.log(`無需調用工具,直接回複:${assistant_output.content}`);
} else {
// 進入工具調用迴圈
while (assistant_output.tool_calls) {
for (const tool_call of assistant_output.tool_calls) {
const tool_call_id = tool_call.id;
const func_name = tool_call.function.name;
const args = JSON.parse(tool_call.function.arguments);
console.log(`正在調用工具 [${func_name}],參數:`, args);
// 執行工具
const tool_result = await write_file(args.path, args.content);
// 構造工具返回資訊
const tool_message = {
"role": "tool",
"tool_call_id": tool_call_id,
"content": tool_result
};
console.log(`工具返回:${tool_message.content}`);
messages.push(tool_message);
}
// 再次調用模型,擷取總結後的自然語言回複
const response = await client.chat.completions.create({
model: "qwen3-coder-plus",
messages: messages,
tools: tools
});
assistant_output = response.choices[0].message;
if (!assistant_output.content) assistant_output.content = "";
messages.push(assistant_output);
}
console.log(`模型最終回複:${assistant_output.content}`);
}
}
main();
返回結果
正在調用工具 [write_file],參數: {
content: 'def quick_sort(arr):\\n if len(arr) <= 1:\\n return arr\\n pivot = arr[len(arr) // 2]\\n left = [x for x in arr if x < pivot]\\n middle = [x for x in arr if x == pivot]\\n right = [x for x in arr if x > pivot]\\n return quick_sort(left) + middle + quick_sort(right)\\n\\nif __name__ == \\"__main__\\":\\n example_list = [3, 6, 8, 10, 1, 2, 1]\\n print(\\"Original list:\\", example_list)\\n sorted_list = quick_sort(example_list)\\n print(\\"Sorted list:\\", sorted_list)',
path: 'quick_sort.py'
}
工具返回:成功: 檔案 'quick_sort.py' 已寫入
模型最終回複:已成功建立 `quick_sort.py` 檔案,其中包含快速排序的 Python 實現。你可以運行該檔案以查看樣本列表的排序結果。如果需要進一步修改或解釋,請告訴我!curl
請求樣本
該樣本展示了工具調用流程的第一步:發起請求並獲得模型的工具調用意圖。
以下為新加坡地區url,若使用北京地區的模型,需將url替換為:https://dashscope.aliyuncs.com/compatible-mode/v1/chat/completions
curl -X POST https://dashscope-intl.aliyuncs.com/compatible-mode/v1/chat/completions \
-H "Authorization: Bearer $DASHSCOPE_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "qwen3-coder-plus",
"messages": [
{
"role": "user",
"content": "寫一個python代碼,快速排序,命名為quick_sort.py"
}
],
"tools": [
{
"type": "function",
"function": {
"name": "write_file",
"description": "將內容寫入指定檔案,若檔案不存在則建立。",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "目標檔案的相對或絕對路徑"
},
"content": {
"type": "string",
"description": "寫入檔案的字串內容"
}
},
"required": ["path", "content"]
}
}
}
]
}'返回結果
{
"choices": [
{
"message": {
"content": "",
"role": "assistant",
"tool_calls": [
{
"index": 0,
"id": "call_0ca7505bb6e44471a40511e5",
"type": "function",
"function": {
"name": "write_file",
"arguments": "{\"content\": \"def quick_sort(arr):\\\\n if len(arr) <= 1:\\\\n return arr\\\\n pivot = arr[len(arr) // 2]\\\\n left = [x for x in arr if x < pivot]\\\\n middle = [x for x in arr if x == pivot]\\\\n right = [x for x in arr if x > pivot]\\\\n return quick_sort(left) + middle + quick_sort(right)\\\\n\\\\nif __name__ == \\\\\\\"__main__\\\\\\\":\\\\n example_list = [3, 6, 8, 10, 1, 2, 1]\\\\n print(\\\\\\\"Original list:\\\\\\\", example_list)\\\\n sorted_list = quick_sort(example_list)\\\\n print(\\\\\\\"Sorted list:\\\\\\\", sorted_list)\", \"path\": \"quick_sort.py\"}"
}
}
]
},
"finish_reason": "tool_calls",
"index": 0,
"logprobs": null
}
],
"object": "chat.completion",
"usage": {
"prompt_tokens": 494,
"completion_tokens": 193,
"total_tokens": 687,
"prompt_tokens_details": {
"cached_tokens": 0
}
},
"created": 1761620025,
"system_fingerprint": null,
"model": "qwen3-coder-plus",
"id": "chatcmpl-20e96159-beea-451f-b3a4-d13b218112b5"
}DashScope
Python
請求樣本
import os
import json
import dashscope
# 以下為新加坡地區base_url,若使用北京地區的模型,需將base_url替換為:https://dashscope.aliyuncs.com/api/v1
dashscope.base_http_api_url = 'https://dashscope-intl.aliyuncs.com/api/v1'
tools = [
{
"type": "function",
"function": {
"name": "write_file",
"description": "將內容寫入指定檔案,若檔案不存在則建立。",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "目標檔案的相對或絕對路徑"
},
"content": {
"type": "string",
"description": "寫入檔案的字串內容"
}
},
"required": ["path", "content"]
}
}
}
]
# 工具函數實現
def write_file(path: str, content: str) -> str:
"""寫入檔案內容"""
try:
# 為安全起見,檔案寫入功能已預設禁用,如需使用請取消注釋並確保路徑安全
# os.makedirs(os.path.dirname(path),exist_ok=True) if os.path.dirname(path) else None
# with open(path, 'w', encoding='utf-8') as f:
# f.write(content)
return f"成功: 檔案 '{path}' 已寫入"
except Exception as e:
return f"錯誤: 寫入檔案時發生異常 - {str(e)}"
messages = [{"role": "user", "content": "寫一個python代碼,快速排序,命名為quick_sort.py"}]
response = dashscope.Generation.call(
# 若沒有配置環境變數,請用百鍊API Key將下行替換為:api_key="sk-xxx",
api_key=os.getenv('DASHSCOPE_API_KEY'),
model='qwen3-coder-plus',
messages=messages,
tools=tools,
result_format='message'
)
if response.status_code == 200:
assistant_output = response.output.choices[0].message
messages.append(assistant_output)
# 如果不需要調用工具,直接輸出內容
if "tool_calls" not in assistant_output or not assistant_output["tool_calls"]:
print(f"無需調用工具,直接回複:{assistant_output['content']}")
else:
# 進入工具調用迴圈
while "tool_calls" in assistant_output and assistant_output["tool_calls"]:
for tool_call in assistant_output["tool_calls"]:
func_name = tool_call["function"]["name"]
arguments = json.loads(tool_call["function"]["arguments"])
tool_call_id = tool_call.get("id")
print(f"正在調用工具 [{func_name}],參數:{arguments}")
# 執行工具
tool_result = write_file(**arguments)
# 構造工具返回資訊
tool_message = {
"role": "tool",
"content": tool_result,
"tool_call_id": tool_call_id
}
print(f"工具返回:{tool_message['content']}")
messages.append(tool_message)
# 再次調用模型,擷取總結後的自然語言回複
response = dashscope.Generation.call(
api_key=os.getenv('DASHSCOPE_API_KEY'),
model='qwen3-coder-plus',
messages=messages,
tools=tools,
result_format='message'
)
if response.status_code == 200:
print(f"模型最終回複:{response.output.choices[0].message.content}")
assistant_output = response.output.choices[0].message
messages.append(assistant_output)
else:
print(f"總結回複時執行錯誤:{response}")
break
else:
print(f"執行錯誤:{response}")
返回結果
正在調用工具 [write_file],參數:{'content': 'def quick_sort(arr):\\n if len(arr) <= 1:\\n return arr\\n pivot = arr[len(arr) // 2]\\n left = [x for x in arr if x < pivot]\\n middle = [x for x in arr if x == pivot]\\n right = [x for x in arr if x > pivot]\\n return quick_sort(left) + middle + quick_sort(right)\\n\\nif __name__ == \\"__main__\\":\\n example_list = [3, 6, 8, 10, 1, 2, 1]\\n print(\\"Original list:\\", example_list)\\n sorted_list = quick_sort(example_list)\\n print(\\"Sorted list:\\", sorted_list)', 'path': 'quick_sort.py'}
工具返回:成功: 檔案 'quick_sort.py' 已寫入
模型最終回複:已成功建立 `quick_sort.py` 檔案,其中包含快速排序的 Python 實現。你可以運行該檔案以查看樣本列表的排序結果。如果需要進一步修改或解釋,請告訴我!Java
請求樣本
import com.alibaba.dashscope.aigc.generation.Generation;
import com.alibaba.dashscope.aigc.generation.GenerationParam;
import com.alibaba.dashscope.aigc.generation.GenerationResult;
import com.alibaba.dashscope.common.Message;
import com.alibaba.dashscope.common.Role;
import com.alibaba.dashscope.protocol.Protocol;
import com.alibaba.dashscope.exception.NoApiKeyException;
import com.alibaba.dashscope.exception.InputRequiredException;
import com.alibaba.dashscope.tools.FunctionDefinition;
import com.alibaba.dashscope.tools.ToolCallBase;
import com.alibaba.dashscope.tools.ToolCallFunction;
import com.alibaba.dashscope.tools.ToolFunction;
import com.alibaba.dashscope.utils.JsonUtils;
import com.fasterxml.jackson.databind.JsonNode;
import com.fasterxml.jackson.databind.ObjectMapper;
import java.io.File;
import java.nio.charset.StandardCharsets;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class Main {
/**
* 寫入檔案內容
* @param arguments 模型傳入的、包含工具所需參數的JSON字串。
* @return 工具執行後的結果字串。
*/
public static String writeFile(String arguments) {
try {
ObjectMapper objectMapper = new ObjectMapper();
JsonNode argsNode = objectMapper.readTree(arguments);
String path = argsNode.get("path").asText();
String content = argsNode.get("content").asText();
// 為安全起見,檔案寫入功能已預設禁用,如需使用請取消注釋並確保路徑安全
// File file = new File(path);
// File parentDir = file.getParentFile();
// if (parentDir != null && !parentDir.exists()) {
// parentDir.mkdirs();
// }
// Files.write(Paths.get(path), content.getBytes(StandardCharsets.UTF_8));
return "成功: 檔案 '" + path + "' 已寫入";
} catch (Exception e) {
return "錯誤: 寫入檔案時發生異常 - " + e.getMessage();
}
}
public static void main(String[] args) {
try {
// 定義工具參數模式
String writePropertyParams =
"{\"type\":\"object\",\"properties\":{\"path\":{\"type\":\"string\",\"description\":\"目標檔案的相對或絕對路徑\"},\"content\":{\"type\":\"string\",\"description\":\"寫入檔案的字串內容\"}},\"required\":[\"path\",\"content\"]}";
FunctionDefinition writeFileFunction = FunctionDefinition.builder()
.name("write_file")
.description("將內容寫入指定檔案,若檔案不存在則建立。")
.parameters(JsonUtils.parseString(writePropertyParams).getAsJsonObject())
.build();
// 以下為新加坡地區base_url,若使用北京地區的模型,需將base_url替換為:https://dashscope.aliyuncs.com/api/v1
Generation gen = new Generation(Protocol.HTTP.getValue(), "https://dashscope-intl.aliyuncs.com/api/v1");
String userInput = "寫一個python代碼,快速排序,命名為quick_sort.py";
List<Message> messages = new ArrayList<>();
messages.add(Message.builder().role(Role.USER.getValue()).content(userInput).build());
// 首次調用模型
GenerationParam param = GenerationParam.builder()
.model("qwen3-coder-plus")
.apiKey(System.getenv("DASHSCOPE_API_KEY"))
.messages(messages)
.tools(Arrays.asList(ToolFunction.builder().function(writeFileFunction).build()))
.resultFormat(GenerationParam.ResultFormat.MESSAGE)
.build();
GenerationResult result = gen.call(param);
Message assistantOutput = result.getOutput().getChoices().get(0).getMessage();
messages.add(assistantOutput);
// 如果不需要調用工具,直接輸出內容
if (assistantOutput.getToolCalls() == null || assistantOutput.getToolCalls().isEmpty()) {
System.out.println("無需調用工具,直接回複:" + assistantOutput.getContent());
} else {
// 進入工具調用迴圈
while (assistantOutput.getToolCalls() != null && !assistantOutput.getToolCalls().isEmpty()) {
for (ToolCallBase toolCall : assistantOutput.getToolCalls()) {
ToolCallFunction functionCall = (ToolCallFunction) toolCall;
String funcName = functionCall.getFunction().getName();
String arguments = functionCall.getFunction().getArguments();
System.out.println("正在調用工具 [" + funcName + "],參數:" + arguments);
// 執行工具
String toolResult = writeFile(arguments);
// 構造工具返回資訊
Message toolMessage = Message.builder()
.role("tool")
.toolCallId(toolCall.getId())
.content(toolResult)
.build();
System.out.println("工具返回:" + toolMessage.getContent());
messages.add(toolMessage);
}
// 再次調用模型,擷取總結後的自然語言回複
param.setMessages(messages);
result = gen.call(param);
assistantOutput = result.getOutput().getChoices().get(0).getMessage();
messages.add(assistantOutput);
}
System.out.println("模型最終回複:" + assistantOutput.getContent());
}
} catch (NoApiKeyException | InputRequiredException e) {
System.err.println("錯誤: " + e.getMessage());
} catch (Exception e) {
e.printStackTrace();
}
}
}
返回結果
正在調用工具 [write_file],參數:{"content": "def quick_sort(arr):\\n if len(arr) <= 1:\\n return arr\\n pivot = arr[len(arr) // 2]\\n left = [x for x in arr if x < pivot]\\n middle = [x for x in arr if x == pivot]\\n right = [x for x in arr if x > pivot]\\n return quick_sort(left) + middle + quick_sort(right)\\n\\nif __name__ == \\\"__main__\\\":\\n example_array = [3, 6, 8, 10, 1, 2, 1]\\n print(\\\"Original array:\\\", example_array)\\n sorted_array = quick_sort(example_array)\\n print(\\\"Sorted array:\\\", sorted_array)", "path": "quick_sort.py"}
工具返回:成功: 檔案 'quick_sort.py' 已寫入
模型最終回複:已成功為您建立了快速排序的Python代碼檔案 `quick_sort.py`。該檔案包含一個 `quick_sort` 函數和一個樣本用法,您可以在終端或編輯器中運行它來測試快速排序功能。curl
請求樣本
該樣本展示了工具調用流程的第一步:發起請求並獲得模型的工具調用意圖。
以下為新加坡地區url,若使用北京地區的模型,需將url替換為:https://dashscope.aliyuncs.com/api/v1/services/aigc/text-generation/generation
curl --location "https://dashscope-intl.aliyuncs.com/api/v1/services/aigc/text-generation/generation" \
--header "Authorization: Bearer $DASHSCOPE_API_KEY" \
--header "Content-Type: application/json" \
--data '{
"model": "qwen3-coder-plus",
"input": {
"messages": [{
"role": "user",
"content": "寫一個python代碼,快速排序,命名為quick_sort.py"
}]
},
"parameters": {
"result_format": "message",
"tools": [
{
"type": "function",
"function": {
"name": "write_file",
"description": "將內容寫入指定檔案,若檔案不存在則建立。",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "目標檔案的相對或絕對路徑"
},
"content": {
"type": "string",
"description": "寫入檔案的字串內容"
}
},
"required": ["path", "content"]
}
}
}
]
}
}'返回結果
{
"output": {
"choices": [
{
"finish_reason": "tool_calls",
"message": {
"role": "assistant",
"tool_calls": [
{
"function": {
"name": "write_file",
"arguments": "{\"content\": \"def quick_sort(arr):\\\\n if len(arr) <= 1:\\\\n return arr\\\\n pivot = arr[len(arr) // 2]\\\\n left = [x for x in arr if x < pivot]\\\\n middle = [x for x in arr if x == pivot]\\\\n right = [x for x in arr if x > pivot]\\\\n return quick_sort(left) + middle + quick_sort(right)\\\\n\\\\nif __name__ == \\\\\\\"__main__\\\\\\\":\\\\n example_list = [3, 6, 8, 10, 1, 2, 1]\\\\n print(\\\\\\\"Original list:\\\\\\\", example_list)\\\\n sorted_list = quick_sort(example_list)\\\\n print(\\\\\\\"Sorted list:\\\\\\\", sorted_list), \"path\": \"quick_sort.py\"}"
},
"index": 0,
"id": "call_645b149bbd274e8bb3789aae",
"type": "function"
}
],
"content": ""
}
}
]
},
"usage": {
"total_tokens": 684,
"output_tokens": 193,
"input_tokens": 491,
"prompt_tokens_details": {
"cached_tokens": 0
}
},
"request_id": "d2386acd-fce3-9d0f-8015-c5f3a8bf9f5c"
}代碼補全
Qwen-Coder 支援兩種代碼補全方式,請根據您的需求選擇:
首碼續寫(Partial Mode):適用於所有 Qwen-Coder 模型和地區,支援首碼補全,實現簡單,推薦使用。
Completions介面:僅支援中國(北京)地區的
qwen2.5-coder系列模型。支援首碼補全和前尾碼補全。
首碼續寫 (Partial Mode)
此功能用於在您寫了一半的代碼(首碼)基礎上,讓模型自動完成剩餘部分。
通過在 messages 列表中加入一個 role 為 assistant 的訊息,並設定 partial: true 來實現。assistant 訊息的 content 即為您提供的代碼首碼。詳情請參見首碼續寫。
OpenAI相容
Python
請求樣本
import os
from openai import OpenAI
client = OpenAI(
# 若沒有配置環境變數,請用阿里雲百鍊API Key將下行替換為:api_key="sk-xxx",
api_key=os.getenv("DASHSCOPE_API_KEY"),
# 以下為新加坡地區base_url,若使用北京地區的模型,需將base_url替換為:https://dashscope.aliyuncs.com/compatible-mode/v1
base_url="https://dashscope-intl.aliyuncs.com/compatible-mode/v1",
)
completion = client.chat.completions.create(
model="qwen3-coder-plus",
messages=[{
"role": "user",
"content": "請幫我寫一個python代碼產生100以內的素數。不要輸出非代碼的內容和Markdown的代碼塊。"
},
{
"role": "assistant",
"content": "def generate_prime_number",
"partial": True
}]
)
print(completion.choices[0].message.content)
返回結果
(n):
primes = []
for i in range(2, n+1):
is_prime = True
for j in range(2, int(i**0.5)+1):
if i % j == 0:
is_prime = False
break
if is_prime:
primes.append(i)
return primes
prime_numbers = generate_prime_number(100)
print(prime_numbers)Node.js
請求樣本
import OpenAI from "openai";
const client = new OpenAI(
{
// 若沒有配置環境變數,請用百鍊API Key將下行替換為:apiKey: "sk-xxx",
apiKey: process.env.DASHSCOPE_API_KEY,
// 以下為新加坡地區base_url,若使用北京地區的模型,需將base_url替換為:https://dashscope.aliyuncs.com/compatible-mode/v1
baseURL: "https://dashscope-intl.aliyuncs.com/compatible-mode/v1"
}
);
async function main() {
const completion = await client.chat.completions.create({
model: "qwen3-coder-plus",
messages: [
{ role: "user", content: "請幫我寫一個python代碼產生100以內的素數。不要輸出非代碼的內容和Markdown的代碼塊。" },
{ role: "assistant", content: "def generate_prime_number", partial: true}
],
});
console.log(completion.choices[0].message.content);
}
main();返回結果
(n):
primes = []
for i in range(2, n+1):
is_prime = True
for j in range(2, int(i**0.5)+1):
if i % j == 0:
is_prime = False
break
if is_prime:
primes.append(i)
return primes
prime_numbers = generate_prime_number(100)
print(prime_numbers)curl
請求樣本
以下為新加坡地區url,若使用北京地區的模型,需將url替換為:https://dashscope.aliyuncs.com/compatible-mode/v1/chat/completions
curl -X POST https://dashscope-intl.aliyuncs.com/compatible-mode/v1/chat/completions \
-H "Authorization: Bearer $DASHSCOPE_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "qwen3-coder-plus",
"messages": [{
"role": "user",
"content": "請幫我寫一個python代碼產生100以內的素數。不要輸出非代碼的內容和Markdown的代碼塊。"
},
{
"role": "assistant",
"content": "def generate_prime_number",
"partial": true
}]
}'返回結果
{
"choices": [
{
"message": {
"content": "(n):\n primes = []\n for num in range(2, n + 1):\n is_prime = True\n for i in range(2, int(num ** 0.5) + 1):\n if num % i == 0:\n is_prime = False\n break\n if is_prime:\n primes.append(num)\n return primes\n\nprime_numbers = generate_prime_number(100)\nprint(prime_numbers)",
"role": "assistant"
},
"finish_reason": "stop",
"index": 0,
"logprobs": null
}
],
"object": "chat.completion",
"usage": {
"prompt_tokens": 38,
"completion_tokens": 93,
"total_tokens": 131,
"prompt_tokens_details": {
"cached_tokens": 0
}
},
"created": 1761634556,
"system_fingerprint": null,
"model": "qwen3-coder-plus",
"id": "chatcmpl-c108050a-bb6d-4423-9d36-f64aa6a32976"
}DashScope
Python
請求樣本
from http import HTTPStatus
import dashscope
import os
# 以下為新加坡地區base_url,若使用北京地區的模型,需將base_url替換為:https://dashscope.aliyuncs.com/api/v1
dashscope.base_http_api_url = 'https://dashscope-intl.aliyuncs.com/api/v1'
messages = [{
"role": "user",
"content": "請幫我寫一個python代碼產生100以內的素數,不要輸出非代碼的內容和Markdown的代碼塊。"
},
{
"role": "assistant",
"content": "def generate_prime_number",
"partial": True
}]
response = dashscope.Generation.call(
# 若沒有配置環境變數,請用百鍊API Key將下行替換為:api_key="sk-xxx",
api_key=os.getenv('DASHSCOPE_API_KEY'),
model='qwen3-coder-plus',
messages=messages,
result_format='message',
)
if response.status_code == HTTPStatus.OK:
print(response.output.choices[0].message.content)
else:
print(f"HTTP返回碼:{response.status_code}")
print(f"錯誤碼:{response.code}")
print(f"錯誤資訊:{response.message}")
返回結果
(n):
primes = []
for i in range(2, n+1):
is_prime = True
for j in range(2, int(i**0.5)+1):
if i % j == 0:
is_prime = False
break
if is_prime:
primes.append(i)
return primes
prime_numbers = generate_prime_number(100)
print(prime_numbers)curl
請求樣本
以下為新加坡地區url,若使用北京地區的模型,需將url替換為:https://dashscope.aliyuncs.com/api/v1/services/aigc/text-generation/generation
curl -X POST "https://dashscope-intl.aliyuncs.com/api/v1/services/aigc/text-generation/generation" \
-H "Authorization: Bearer $DASHSCOPE_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "qwen3-coder-plus",
"input":{
"messages":[{
"role": "user",
"content": "請幫我寫一個python代碼產生100以內的素數,不要輸出非代碼的內容和Markdown的代碼塊。"
},
{
"role": "assistant",
"content": "def generate_prime_number",
"partial": true
}]
},
"parameters": {
"result_format": "message"
}
}'返回結果
{
"output": {
"choices": [
{
"message": {
"content": "(n):\n prime_list = []\n for i in range(2, n+1):\n is_prime = True\n for j in range(2, int(i**0.5)+1):\n if i % j == 0:\n is_prime = False\n break\n if is_prime:\n prime_list.append(i)\n return prime_list\n\nprime_numbers = generate_prime_number(100)\nprint(prime_numbers)",
"role": "assistant"
},
"finish_reason": "stop"
}
]
},
"usage": {
"total_tokens": 131,
"output_tokens": 92,
"input_tokens": 39,
"prompt_tokens_details": {
"cached_tokens": 0
}
},
"request_id": "9917f629-e819-4519-af44-b0e677e94b2c"
}Completions 介面
Completions 介面僅適用中國(北京)地區的模型,需使用中國(北京)地區的API Key。
支援的模型:
qwen2.5-coder-0.5b-instruct、qwen2.5-coder-1.5b-instruct、qwen2.5-coder-3b-instruct、qwen2.5-coder-7b-instruct、qwen2.5-coder-14b-instruct、qwen2.5-coder-32b-instruct、qwen-coder-turbo-0919、qwen-coder-turbo-latest、qwen-coder-turbo
Completions介面通過在 prompt 中使用特殊的 fim (Fill-in-the-Middle) 標籤來引導模型進行補全。
基於首碼補全
提示詞模板:
<|fim_prefix|>{prefix_content}<|fim_suffix|><|fim_prefix|>和<|fim_suffix|>為特殊 Token,用於指引模型進行文本的補全,無需修改。{prefix_content}需要替換為傳入的首碼資訊,例如函數的名稱、輸入參數、使用說明等資訊。
import os
from openai import OpenAI
client = OpenAI(
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
api_key=os.getenv("DASHSCOPE_API_KEY")
)
completion = client.completions.create(
model="qwen2.5-coder-32b-instruct",
prompt="<|fim_prefix|>def quick_sort(arr):<|fim_suffix|>",
)
print(completion.choices[0].text)import OpenAI from "openai";
const client = new OpenAI(
{
// 若沒有配置環境變數,請用阿里雲百鍊API Key將下行替換為:apiKey: "sk-xxx",
apiKey: process.env.DASHSCOPE_API_KEY,
baseURL: "https://dashscope.aliyuncs.com/compatible-mode/v1"
}
);
async function main() {
const completion = await client.completions.create({
model: "qwen2.5-coder-32b-instruct",
prompt: "<|fim_prefix|>def quick_sort(arr):<|fim_suffix|>",
});
console.log(completion.choices[0].text)
}
main();curl -X POST https://dashscope.aliyuncs.com/compatible-mode/v1/completions \
-H "Authorization: Bearer $DASHSCOPE_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "qwen2.5-coder-32b-instruct",
"prompt": "<|fim_prefix|>def quick_sort(arr):<|fim_suffix|>"
}'基於首碼和尾碼補全
提示詞模板:
<|fim_prefix|>{prefix_content}<|fim_suffix|>{suffix_content}<|fim_middle|><|fim_prefix|>、<|fim_suffix|>和<|fim_middle|>為特殊 Token,用於指引模型進行文本的補全,無需修改。{prefix_content}需要替換為傳入的首碼資訊,例如函數的名稱、輸入參數、使用說明等資訊。{suffix_content}需要替換為傳入的尾碼資訊,例如函數的返回參數等資訊。
import os
from openai import OpenAI
client = OpenAI(
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
api_key=os.getenv("DASHSCOPE_API_KEY")
)
prefix_content = """def reverse_words_with_special_chars(s):
'''
反轉字串中的每個單詞(保留非字母字元的位置),並保持單詞順序。
樣本:
reverse_words_with_special_chars("Hello, world!") -> "olleH, dlrow!"
參數:
s (str): 輸入字串(可能包含標點符號)
返回:
str: 處理後的字串,單詞反轉但非字母字元位置不變
'''
"""
suffix_content = "return result"
completion = client.completions.create(
model="qwen2.5-coder-32b-instruct",
prompt=f"<|fim_prefix|>{prefix_content}<|fim_suffix|>{suffix_content}<|fim_middle|>",
)
print(completion.choices[0].text)import OpenAI from 'openai';
const client = new OpenAI({
baseURL: "https://dashscope.aliyuncs.com/compatible-mode/v1",
apiKey: process.env.DASHSCOPE_API_KEY
});
const prefixContent = `def reverse_words_with_special_chars(s):
'''
反轉字串中的每個單詞(保留非字母字元的位置),並保持單詞順序。
樣本:
reverse_words_with_special_chars("Hello, world!") -> "olleH, dlrow!"
參數:
s (str): 輸入字串(可能包含標點符號)
返回:
str: 處理後的字串,單詞反轉但非字母字元位置不變
'''
`;
const suffixContent = "return result";
async function main() {
const completion = await client.completions.create({
model: "qwen2.5-coder-32b-instruct",
prompt: `<|fim_prefix|>${prefixContent}<|fim_suffix|>${suffixContent}<|fim_middle|>`
});
console.log(completion.choices[0].text);
}
main();curl -X POST https://dashscope.aliyuncs.com/compatible-mode/v1/completions \
-H "Authorization: Bearer $DASHSCOPE_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "qwen2.5-coder-32b-instruct",
"prompt": "<|fim_prefix|>def reverse_words_with_special_chars(s):\n\"\"\"\n反轉字串中的每個單詞(保留非字母字元的位置),並保持單詞順序。\n 樣本:\n reverse_words_with_special_chars(\"Hello, world!\") -> \"olleH, dlrow!\"\n 參數:\n s (str): 輸入字串(可能包含標點符號)\n 返回:\n str: 處理後的字串,單詞反轉但非字母字元位置不變\n\"\"\"\n<|fim_suffix|>return result<|fim_middle|>"
}'應用於生產環境
為最佳化通義千問代碼模型的使用效率並降低成本,可參考以下建議:
啟用流式輸出: 設定
stream=True可以即時返回中間結果,降低逾時風險,提升使用者體驗。降低溫度參數: 代碼產生任務通常要求結果的確定性和準確性。建議將
temperature參數設定在0.1至0.3之間,以減少產生結果的隨機性。使用支援上下文緩衝的模型: 在包含大量重複首碼的情境(如代碼補全、代碼審查),推薦使用支援上下文緩衝的模型(如 qwen3-coder-plus 和 qwen3-coder-flash),以有效降低開銷。
控制工具數量:為確保模型調用的效率和成本效益,建議單次傳入的工具
tools數量不超過20個。傳入大量工具描述會消耗過多輸入Token,這不僅會增加費用、降低響應速度,還會加大模型選擇正確工具的難度,詳情可參見Function Calling。
計費與限流
基本計費:根據每次請求的輸入
Token數和輸出Token數計費。不同模型的單價不同,具體價格請參考模型列表。特殊計費項目:
階梯計費:
qwen3-coder系列模型採取階梯計費。當單次請求的輸入Token數達到特定階梯後,該請求的全部輸入和輸出Token均按此階梯的單價計費。上下文緩衝:對於支援上下文緩衝的模型(
qwen3-coder-plus、qwen3-coder-flash),當多次請求包含大量重複輸入時(如代碼審查),緩衝機制可顯著降低成本。命中隱式緩衝的輸入文本按單價的 20% 計費,命中顯式緩衝的輸入文本按單價的 10% 計費。詳情請參見上下文緩衝。工具調用 (Function Calling):使用工具調用功能時,您在
tools參數中定義的工具描述會作為輸入內容計入Token總量併產生費用。
限流:API調用受到每分鐘請求數(RPM)和每分鐘Token數(TPM)的雙重限制。詳情請參見限流。
免費額度(僅新加坡地區):從開通百鍊或模型申請通過之日起計算有效期間,有效期間90天內,Qwen-Coder各模型分別提供100萬Token的新人免費額度。
API參考
關於通義千問代碼模型的輸入與輸出參數,請參見通義千問。
常見問題
使用Qwen Code、Claude Code等開發工具時,為什麼會消耗大量 Token?
通過外部開發工具調用 Qwen-Coder 模型處理問題時,該工具可能會多次調用 API,從而消耗大量 Token。建議在具體的專案目錄下啟動工具,啟動目錄(如根目錄)中過多的檔案會增加 Token 消耗。您可開啟免費額度用完即停功能,以避免免費額度耗盡後產生額外費用。
如何查看模型調用量?
模型調用完一小時後,在模型觀測(新加坡或北京)版面設定查詢條件(例如,選擇時間範圍、業務空間等),再在模型列表地區找到目標模型並單擊操作列的監控,即可查看該模型的調用統計結果。具體請參見用量與效能觀測文檔。
資料按小時更新,高峰期可能有小時級延遲,請您耐心等待。

如何讓模型只輸出代碼,不包含任何解釋性文字?
可參考以下方法:
提示詞約束: 在提示詞中明確指示,例如:“只傳回碼,不要包含任何解釋、注釋或 markdown 標記。”
設定
stop序列: 使用stop=["\n# 解釋:", "說明", "Explanation:", "Note:"]等片語,在模型開始產生解釋性文字時提前終止,詳情請參見通義千問 API 參考。