All Products
Search
Document Center

Platform For AI:Model Export

Last Updated:Jul 21, 2023

This topic describes how to use the Model Export component to export EasyRec models.

Prerequisites

You have trained a model by using the Model Training component. For more information, see Model Training.

Configure the component in Machine Learning Designer

  • Input stubs

Stub (from left to right)

Data type and upstream component

Parameter of PAI commands

Required

input model dir

Object Storage Service (OSS) path / Model Training

model_dir

Yes

  • Component parameters

Tab

Parameter

Required

Description

Parameters of PAI commands

Default value

Parameters Setting

EasyRec Configuration

No

The EasyRec Configuration is the pipeline.config file generated in the Model Training-Model Path section. You need to either configure the input model dir stub, or specify a model path in EasyRec Configuration. If both are configured, the input model dir stub takes precedence.

config

None

checkpoint_path

No

The OSS path of the checkpoint. If you set this parameter, the model path specified in input model dir stub is ignored.

checkpoint_path

None

export_dir

Yes

The directory of the exported model.

export_dir

None

extra_params

No

Other parameters that are not specified in the pipeline, such as assert_files. Example: -- assert_files oss://xxx.

extra_params

None

Specify the algorithm version

No

Select Advanced Options, you can select an algorithm package to run.

1. Generate a TAR package. For more information, see Release & Upgrade in the EasyRec documentation.

2. Upload the TAR package to OSS. For more information, see Upload objects.

3. Select the uploaded file in this parameter.

script

None

Tuning

Worker Count

None

The number of worker nodes.

The parameters on the Tuning tab are passed in as the cluster parameter.

1

Worker CPU

No

The number of CPU cores for each worker node. A value of 1 indicates one CPU core.

8

Worker Memory

No

The memory size of each worker node. A value of 100 indicates 100 MB.

40000

Worker GPU

No

GPUs are not required in most EasyRec trainings.

  • Component parameters

Output stub (from left to right)

Data type

Downstream component

export model dir

OSS path

Update EAS Service(Beta)

PAI commands and description

PAI -project algo_public -name easy_rec_ext
    -Dcmd="export" 
    -Dconfig="oss://rec_sln_demo/EasyRec/deploy/rec_sln_demo_rec_sln_demo_sorting_v2/20230425/pipeline.config" 	
    -Dmodel_dir="oss://rec_sln_demo/EasyRec/deploy/rec_sln_demo_rec_sln_demo_sorting_v2/20230425" 
    -Dexport_dir="oss://lcl-hz/rec_sln_demo/EasyRec/deploy/rec_sln_demo_rec_sln_demo_sorting_v2/export/20230425/final_witn_fg" 
    -Darn="acs:ram::xxxx:role/aliyunodpspaidefaultrole"
    -Dbuckets="oss://rec_sln_demo/" 
    -Dcluster="{\"worker\": {\"count\": 1, \"cpu\": 800, \"gpu\": 0, \"memory\": 40000}}" 
    -Dextra_params="--asset_files oss://rec_sln_demo/EasyRec/deploy/rec_sln_demo_rec_sln_demo_sorting_v2/fg.json" 
    -Dlifecycle="28" 
    -DossHost="oss-cn-hangzhou-internal.aliyuncs.com";

Parameter

Description

Required

config

The pipeline.config file generated in the training. If you specify the model_dir parameter, the model path in the pipeline.config file is ignored. This parameter is used for periodic scheduling.

No

model_dir

The OSS path in which the trained model is stored. If you specify the model_dir parameter, the model path in the pipeline.config file is ignored. This parameter is used for periodic scheduling.

No

cmd

To export the model, set the parameter to export.

Yes

export_dir

The OSS directory to which the model is exported.

Yes

arn

The authorization information. You can log on to the PAI console. Choose Activation & Authorization > Dependent Services. Find the cloud service that you want to manage in the Designer section and click View Authorization.

Yes

ossHost

The endpoint of OSS. For more information about how to obtain the endpoint, see Regions and endpoints.

Yes

buckets

The bucket where the config file resides and the bucket where the model is stored. If multiple buckets are used, separate multiple buckets with commas (,). Example: oss://xxxx/,oss://xxxx/.

Yes

extra_params

Other parameters that are not specified in the pipeline.

No

Example

  1. Create a pipeline as shown in the following figure.

Section

Description

1, 2, 3

Components used in model training. For more information, see the "Example" section in the Model Training topic.

4

Configure the export_dir parameter.

image..png
  1. After the pipeline is run, you can view the exported model in the OSS path that you specified by the export_dir parameter.

Rank