All Products
Search
Document Center

OpenSearch:Vector dimensionality reduction service

Last Updated:Aug 05, 2025

Service name

Service ID

Service description

QPS limit for API calls (Alibaba Cloud account and RAM users)

OpenSearch Vector Dimensionality Reduction Service-001

ops-embedding-dim-reduction-001

Provides vector dimensionality reduction service, supporting vector dimensionality reduction up to 4k. You can fine-tune the model based on your business needs.

50

Note

To apply for higher QPS, submit a ticket.

Prerequisites

  • The authentication information is obtained.

    When you call an AI Search Open Platform service by using an API, you need to authenticate the caller's identity.

  • The service access address is obtained.

    You can call a service over the Internet or a virtual private cloud (VPC). For more information, see Get service registration address.

Request description

General description

  • The request body must not exceed 8MB.

HTTP request method

POST

URL

{host}/v3/openapi/workspaces/{workspace_name}/embedding-tuning/{service_id}
  • host: The address for calling the service, supports calling API services through both public network and VPC. For more information, see Query service endpoint.

  • workspace_name: The name of the workspace, such as 'default'.

  • service_id: The system built-in service ID, such as ops-embedding-dim-reduction-001.

Request parameters

Header parameters

API-KEY Authentication

Parameter

Type

Required

Description

Example value

Content-Type

String

Yes

Request type: application/json

application/json

Authorization

String

Yes

API-Key

Bearer OS-d1**2a

Body parameters

Parameter

Type

Required

Description

Example value

input

List<List<Float>>

Yes

Input vector collection.

[0.111,0.222,0.333]

parameters

Map

No

Adjustable request parameters. These parameters may vary based on different service IDs.

parameters.output_dimension

Integer

No

Output dimension. Default value: 512.

512

parameters.model_name

String

No

Name of the user-trained model. If it is a vector compression service, this is required.

xxxx-model

Response parameters

Parameter

Type

Description

Example value

result.output

List<List<Float>>

Fine-tuned vector results.

usage.doc_count

Int

The number of vector entries input in this request.

2

Curl request example

curl --location 'http://****-hangzhou.opensearch.aliyuncs.com/v3/openapi/workspaces/default/embedding-tuning/ops-embedding-dim-reduction-001/' \
--header 'Authorization: Bearer Your-API-KEY' \
--header 'Content-Type: application/json' \
--data '{  
  "input": [
    [0.111,0.222,0.333],
    [0.121,0.221,0.331]
  ],
  "parameters":{
    "output_dimension": "512",
    "model_name" : "xxxx"
  }
}'

Sample response

Normal sample response

{
  "request_id": "450fcb80-f796-46c1-8d69-e1e86d29aa9f",
  "latency": 564.903929,
  "usage": {
    "doc_count": 2
  }
  "result": {
    "output":[
      [0.111,0.222,0.333],
      [0.121,0.221,0.331]
    ]
  }
}

Sample error response

In the event of an access request error, the output will specify the error reason through the code and message.

{
    "request_id": "590A7EB8-AA84-****-AF31-8C35DC965972",
    "latency": 0.0,
    "code": "InvalidParameter",
    "http_code": 400,
    "message": "document.file_name required"
}

Status codes

HTTP status code

Error code

Description

200

-

Request succeeded. Including task failed scenarios. The actual task status needs to be determined from result.status

404

BadRequest.TaskNotExist

The error message returned because the specified task does not exist.

400

InvalidParameter

Invalid request

500

InternalServerError

Internal error

For more information, see Status codes.