All Products
Search
Document Center

OpenSearch:Sparse text embedding

Last Updated:Aug 05, 2025

OpenSearch AI Search Open Platform allows you to use the sparse text embedding service by calling APIs. You can use this service to convert text data into sparse vectors. Sparse vectors occupy a smaller storage space and are commonly used to express keywords and word frequency information. They can be combined with dense vectors for hybrid retrieval to improve the retrieval effect.

Service

ID

Description

QPS limit for API calls (Alibaba Cloud account and RAM users)

OpenSearch sparse text embedding

ops-text-sparse-embedding-001

  • Supported languages: more than 100 languages

  • Maximum input text length: 8,192 tokens

50

Note

To apply for higher QPS, submit a ticket.

Prerequisites

  • The authentication information is obtained.

    When you call an AI Search Open Platform service by using an API, you need to authenticate the caller's identity.

  • The service access address is obtained.

    You can call a service over the Internet or a virtual private cloud (VPC). For more information, see Get service registration address.

Usage notes

  • The request body cannot exceed 8 MB in size.

Request method

POST

URL

{host}/v3/openapi/workspaces/{workspace_name}/text-sparse-embedding/{service_id} 

URL parameters

  • host: the endpoint that is used to call the API operation. You can call the API operation over the Internet or a virtual private cloud (VPC). For more information about how to obtain the endpoint, see Query service endpoint.

  • workspace_name: the name of the workspace. Example: default.

  • service_id: the ID of the service that you want to use. Example: ops-text-sparse-embedding-001.

Request parameters

Header parameters

API key authentication

Parameter

Type

Required

Description

Example

Content-Type

String

Yes

The request type. Set the value to application/json.

application/json

Authorization

String

Yes

The API key.

Bearer OS-d1**2a

Body parameters

Parameter

Type

Required

Description

Example

input

Array/String

Yes

The input text entries. Each request can contain up to 32 entries. The length of an entry is determined by the model that you select. Empty strings are not supported.

["Science and technology are the primary productive forces","OpenSearch product documentation"]

input_type

String

No

The data type of the input. Valid values:

  • query

  • document

Default value: document.

document

return_token

boolean

No

Specifies whether to return the embeddings. Valid values:

  • true

  • false

Default value: false.

false

Response parameters

Parameter

Type

Description

Example

request_id

String

The request ID.

B4AB89C8-B135-****-A6F8-2BAB801A2CE4

latency

Float/Int

The time consumed for the request, in milliseconds.

10

usage

Object

The metering information about the current call.

"usage": {

"token_count": 11

}

usage.token_count

Int

The number of tokens.

11

result.sparse_emebddings

List

The output of the algorithm used in the request. The value is a list of arrays. Each array contains the output of the algorithm for an input text entry.

[

{

"index": 0,

"embedding": [{

"tokenId": 6,

"weight": 0.10137939453125

}]

},

{

"index": 1,

"embedding": [{

"tokenId": 9803,

"weight": 0.1951904296875

}]

}

]

result.sparse_embeddings[].index

Int

The sequence number of the input text entry in the request.

0

result.sparse_embeddings[].embedding

List

The sparse embedding result.

[ { "token":"test",

"token_id": 900,

"weight":0.423 }]

result.sparse_embeddings[].embedding[].token

String

The text token. This parameter is returned if return_token is set to true.

"xxx"

result.sparse_embeddings[].embedding[].token_id

Int

The ID of the token.

123

result.sparse_embeddings[].embedding[].weight

Float

The weight.

0.121

Sample Curl request

curl -XPOST -H"Content-Type: application/json" 
"http://****-hangzhou.opensearch.aliyuncs.com/v3/openapi/workspaces/default/text-sparse-embedding/ops-text-sparse-embedding-001" 
-H "Authorization: Bearer <Your API key>" 
-d "{
    \"input\": [
          \"Science and technology are the primary productive forces\", 
          "OpenSearch product documentation"
    ], 
    \"input_type\": \"query\", 
    \"return_token\": false
}"

Sample responses

Sample success response

{
	"request_id": "75C50B5B-E79E-4930-****-F48DBB392231",
	"latency": 22,
	"usage": {
		"token_count": 11
	},
	"result": {
		"sparse_embeddings": [
			{
				"index": 0,
				"embedding": [
					{
						"tokenId": 6,
						"weight": 0.10137939453125
					},
					{
						"tokenId": 163040,
						"weight": 0.2841796875
					},
					{
						"tokenId": 354,
						"weight": 0.1431884765625
					},
					{
						"tokenId": 5998,
						"weight": 0.161376953125
					},
					{
						"tokenId": 8550,
						"weight": 0.2388916015625
					},
					{
						"tokenId": 2017,
						"weight": 0.1614990234375
					}
				]
			},
			{
				"index": 1,
				"embedding": [
					{
						"tokenId": 9803,
						"weight": 0.1951904296875
					},
					{
						"tokenId": 86250,
						"weight": 0.317138671875
					},
					{
						"tokenId": 5889,
						"weight": 0.17529296875
					},
					{
						"tokenId": 2564,
						"weight": 0.11614990234375
					},
					{
						"tokenId": 59529,
						"weight": 0.1666259765625
					}
				]
			}
		]
	}
}

Sample error response

If an error occurs for the API request, the corresponding error code and error message are returned by using the code and message parameters.

{
    "request_id": "45C8C9E5-6BCB-****-80D3-E298F788512B",
    "latency": 0,
    "code": "InvalidParameter",
    "message": "JSON parse error: Unexpected character ..."
}

Error codes

For a list of error codes, see Status codes.