All Products
Search
Document Center

OpenSearch:Prediction query

Last Updated:Dec 08, 2025

Description

A prediction query uses the built-in vectorization models of Vector Search Edition to convert text, images, or videos into vector data. You can then use the original text, image, or video to search for data.

Note: If you already have vector data and want to import it directly into a Vector Search Edition instance for retrieval, see Vector query.

URL

/vector-service/inference-query

  • The sample URL omits information such as request headers and the encoding method.

  • The complete endpoint must also include the host address of your application.

  • For information about the definitions, usage, and examples of all request parameters, see the Request body parameters section.

Protocol

HTTP

Request method

POST

Supported format

JSON

Signature mechanism

Calculate the signature for the `authorization` header as follows:

Parameter

Type

Description

accessUserName

string

The username. Find it on the Instance Details page under API Endpoint.

accessPassWord

string

The password. Modify it on the Instance Details page under API Endpoint.

import com.aliyun.darabonba.encode.Encoder;
import com.aliyun.darabonbastring.Client;

public class GenerateAuthorization {
 public static void main(String[] args) throws Exception {
 String accessUserName = "username";
 String accessPassWord = "password";
 String realmStr = "" + accessUserName + ":" + accessPassWord + "";
 String authorization = Encoder.base64EncodeToString(Client.toBytes(realmStr, "UTF-8"));
 System.out.println(authorization);
 }
}

The correct format for the authorization value is:

cm9vdDp******mdhbA==

Add the `Basic` prefix when you specify the `authorization` parameter in an HTTP request.

Example (add to the header):

authorization: Basic cm9vdDp******mdhbA==

Request body parameters

Parameter Name

Description

Default

Type

Required

tableName

The name of the table to query.

None

string

Yes

indexName

The name of the index to query.

The first configured index

string

No

content

The data for prediction.

None

string

Yes

contentType

The data type for video prediction. Valid values:

text, image, video_uri, and video_base64

None

string

No

modal

The vectorization model. Valid values:

  • text: Use for text-to-text search and text-to-image search.

  • image: Use for search-by-image.

  • video: Use for text-to-video, image-to-video, and video-to-video search.

None

string

Yes

videoFrameTopK

The number of frames to retrieve.

100

int

No

namespace

The namespace of the vector to query.

""

string

No

topK

The number of results to return.

100

int

No

includeVector

Specifies whether to return vector information in the document.

false

bool

No

outputFields

A list of fields to return.

[]

list[string]

No

order

The sorting order. `ASC`: ascending. `DESC`: descending.

ASC

string

No

searchParams

Query parameters.

""

string

No

filter

The filter expression.

""

string

No

scoreThreshold

The score threshold for filtering. If you use Euclidean distance, only results with a score less than `scoreThreshold` are returned. If you use inner product, only results with a score greater than `scoreThreshold` are returned.

No filtering by default

float

No

Response parameters

Field Name

Description

Type

result

A list of results.

list[Item]

totalCount

The number of items in the result list.

int

totalTime

The time taken by the engine to process the request, in milliseconds.

float

errorCode

The error code. This field is returned only when an error occurs.

int

errorMsg

The error message. This field is returned only when an error occurs.

string

  • Item definition

Field Name

Description

Type

score

The distance score.

float

fields

The field names and their corresponding values.

map<string, FieldType>

vector

The vector value.

list[float]

id

The primary key value. The type is the same as the defined field type.

FieldType

namespace

The namespace of the vector. This field is returned if a namespace is set.

string

Examples

Text embedding retrieval

  • Request body:

    {
      "tableName": "gist",
      "indexName": "test",
      "content": "hello",
      "modal": "text",
      "topK": 3,
      "searchParams":"{\"qc.searcher.scan_ratio\":0.01}",
      "includeVector": true
    }
  • Response:

    {
      "result":[
        {
          "id": 1,
          "score":1.0508723258972169,
          "vector": [0.1, 0.2, 0.3]
        },
        {
          "id": 2,
          "score":1.0329746007919312,
          "vector": [0.2, 0.2, 0.3]
        },
        {
          "id": 3,
          "score":0.980593204498291,
          "vector": [0.3, 0.2, 0.3]
        }
      ],
      "totalCount":3,
      "totalTime":2.943
    }

Image embedding

Text-to-image search:

  • Request body:

    {
      "tableName": "gist",
      "indexName": "test",
      "content": "Bicycle",
      "modal": "text",
      "topK": 3,
      "searchParams":"{\"qc.searcher.scan_ratio\":0.01}",
      "includeVector": true
    }
  • Response:

    {
      "result":[
        {
          "id": 1,
          "score":1.0508723258972169,
          "vector": [0.1, 0.2, 0.3]
        },
        {
          "id": 2,
          "score":1.0329746007919312,
          "vector": [0.2, 0.2, 0.3]
        },
        {
          "id": 3,
          "score":0.980593204498291,
          "vector": [0.3, 0.2, 0.3]
        }
      ],
      "totalCount":3,
      "totalTime":2.943
    }

Search by image:

  • Request body:

    {
      "tableName": "gist",
      "indexName": "test",
      "content": "Base64-encoded image",
      "modal": "image",
      "topK": 3,
      "searchParams":"{\"qc.searcher.scan_ratio\":0.01}",
      "includeVector": true
    }
  • Response:

    {
        "totalCount": 5,
        "result": [
            {
                "id": 5,
                "score": 1.103209137916565
            },
            {
                "id": 3,
                "score": 1.1278988122940064
            },
            {
                "id": 2,
                "score": 1.1326735019683838
            }
        ],
        "totalTime": 242.615
    }

Subject identification

  • Request body:

    If `range` is not specified:

    {
     "tableName": "gist",
     "indexName": "test",
     "content": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQ",
     "modal": "image",
     "searchParams": "{\"crop\": true}",
     "topK": 3,
     "includeVector": true
    }

    Note: "crop":true specifies a search by subject. If you do not specify the `range` parameter, the system calls the subject identification model.

    If `range` is specified:

    {
     "tableName": "gist",
     "indexName": "test",
     "content": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQ",
     "modal": "image",
     "searchParams": "{\"crop\": true, \"range\": \"100,100,60,70\"}",
     "topK": 3,
     "includeVector": true
    }

    Note: "crop":true, "range":"100,100,60,70" specifies a search by subject. The `range` parameter specifies the subject's area in the image. The four numbers represent the x and y coordinates of the top-left point, the width, and the height of the subject area.

  • Response:

    {
     "result":[
     {
     "id": 1,
     "score":1.0508723258972169,
     "vector": [0.1, 0.2, 0.3]
     }
     ],
     "__meta__": {
     "__range__": "100,100,60,70;",
     }
     "totalCount":1,
     "totalTime":2.943
    }

    Note:

    • The `__range__` field is returned only for subject identification queries where the `modal` parameter is set to `image`.

    • __range__ specifies the subject's area in the image. The four numbers represent the x and y coordinates of the top-left point, the width, and the height of the subject area.

    • If the model detects multiple subjects, the __range__ field contains a list of subject areas sorted by model score in descending order. By default, the query returns the result that corresponds to the first subject in the list.

Text-to-video retrieval

  • Request body:

    {
      "tableName": "video",
      "content": "hello",
      "modal": "video",
      "topK": 3,
      "videoFrameTopK":100,
      "contentType":"text",
      "searchParams":"{\"qc.searcher.scan_ratio\":0.01}"
    }
  • Response:

    {
      "result":[
        {
          "videoId": 1,
          "videoUri": "oss://...",
          "fields" : {
            "tag" : "demo"
          },
          "clips": [{
              "queryStartTime": 5, // Timestamp of the query video frame (in seconds)
              "startTime": 5, // Timestamp of the matched video frame (in seconds)
              "duration": 5, // Matching duration (in seconds)
              "queryStartFrameIndex": 150, // Start index of the query video frame
              "queryEndFrameIndex": 300, // End index of the query video frame
              "startFrameIndex": 150, // Start index of the matched video frame
              "endFrameIndex": 300, // End index of the matched video frame       
              "sim": 0.8 // Overall similarity
           }]
        }
      ],
      "totalCount":1,
      "totalTime":2.943
    }

Video-to-video retrieval

Supported video formats: MP4, AVI, MKV, MOV, FLV, and WebM.

  • Request body:

    {
      "tableName": "video",
      "content": "oss://...",
      "modal": "video",
      "topK": 3,
      "videoFrameTopK":100,
      "contentType":"video_uri",
      "searchParams":"{\"qc.searcher.scan_ratio\":0.01}"
    }

    You can specify the OSS path of the input file. For example: `oss://bucket-name/xxx/xxx.mp4`

    {
      "tableName": "video",
      "content": "data:video/mp4;base64,AAAAIGZ0eXBtcDQyAAABAGlxxxxxxx",
      "modal": "video",
      "topK": 3,
      "videoFrameTopK":100,
      "contentType":"video_encode",
      "searchParams":"{\"qc.searcher.scan_ratio\":0.01}"
    }

    The format is data:video/{format};base64,{base64_video}, where:

    • video/{format}: The format of the video. For example, if the video is in MP4 format, specify video/mp4.

    • base64_video: The Base64-encoded data of the video.

  • Response:

    {
      "result":[
        {
          "videoId": 1,
          "videoUri": "oss://...",
          "fields" : {
            "tag" : "demo"
          },      
          "clips": [{
              "queryStartTime": 5, // Timestamp of the query video frame (in seconds)
              "startTime": 5, // Timestamp of the matched video frame (in seconds)
              "duration": 5, // Matching duration (in seconds)
              "queryStartFrameIndex": 150, // Start index of the query video frame
              "queryEndFrameIndex": 300, // End index of the query video frame
              "startFrameIndex": 150, // Start index of the matched video frame
              "endFrameIndex": 300, // End index of the matched video frame
              "sim": 0.8 // Overall similarity
           }]
        }
      ],
      "totalCount":1,
      "totalTime":2.943
    }

Image-to-video retrieval

Supported image formats: PNG, JPEG, and JPG.

  • Request body:

    {
      "tableName": "video",
      "content": "",
      "modal": "video",
      "topK": 3,
      "videoFrameTopK":100,
      "contentType":"image_encode", 
      "searchParams":"{\"qc.searcher.scan_ratio\":0.01}"
    }

    Pass the Base64-encoded image data to the image parameter in the format data:image/{format};base64,{base64_image}, where:

    • image/{format}: The format of the image. For example, if the image is in JPG format, specify image/jpeg.

    • base64_image: The Base64-encoded data of the image.

  • Response:

    {
      "result":[
        {
          "videoId": 1,
          "videoUri": "oss://...",
          "fields" : {
            "tag" : "demo"
          },      
          "clips": [{
              "queryStartTime": 5, // Timestamp of the query video frame (in seconds)
              "startTime": 5, // Timestamp of the matched video frame (in seconds)
              "duration": 5, // Matching duration (in seconds)
              "queryStartFrameIndex": 150, // Start index of the query video frame
              "queryEndFrameIndex": 300, // End index of the query video frame
              "startFrameIndex": 150, // Start index of the matched video frame
              "endFrameIndex": 300, // End index of the matched video frame
              "sim": 0.8 // Overall similarity
           }]
        }
      ],
      "totalCount":3,
      "totalTime":2.943
    }