The OSS data source provides a bidirectional channel for reading data from and writing data to OSS. This topic describes the data synchronization capabilities of the OSS data source in DataWorks.
Supported field types and limits
Offline read
OSS Reader reads data from OSS and converts it to the data integration protocol. OSS is a storage service for unstructured data. For data integration, OSS Reader supports the following features.
Support | Not supported |
|
|
If you prepare data in OSS as a CSV file, the file must be in standard CSV format. For example, if a column contains a double quotation mark ("), you must replace it with two double quotation marks (""). Otherwise, the file is split incorrectly. If a file has multiple delimiters, we recommend that you use the text file type.
OSS is an unstructured data source that stores file-type data. Before you sync data, confirm that the field structure meets your expectations. Similarly, if the data structure in the unstructured data source changes, you must reconfirm the field structure in the task configuration. Otherwise, data may be garbled during synchronization.
Offline write
OSS Writer converts data from the data synchronization protocol into text files in OSS. OSS is a storage service for unstructured data. OSS Writer supports the following features.
Support | Not supported |
|
|
Type classification | Data integration column configuration type |
Integer types | LONG |
String types | STRING |
Floating-point types | DOUBLE |
Boolean types | BOOLEAN |
Date and time types | DATE |
Real-time write
Supports real-time writes.
Supports real-time writes from a single table to data lakes, such as Hudi (0.12.x), Paimon, and Iceberg.
Create a data source
Before you develop a synchronization task in DataWorks, you must add the required data source to DataWorks by following the instructions in Data Source Management. You can view parameter descriptions in the DataWorks console to understand the meanings of the parameters when you add a data source.
If you create a cross-account OSS data source, you must grant authorization to the corresponding account. For more information, see Grant cross-account access to OSS using a bucket policy.
If you use a RAM role to authorize the OSS data source, see Configure a data source using the RAM role authorization mode.
If you create a cross-region OSS data source, use a public endpoint. For more information, see Overview of endpoints and network connectivity.
Develop a data synchronization task
For information about the entry point for and the procedure of configuring a synchronization task, see the following configuration guides.
Configuration guide for single-table offline sync tasks
For more information about the configuration process, see Codeless UI configuration and Code editor configuration.
For all parameters and a script demo for the code editor, see Appendix: Script demos and parameter descriptions.
Configuration guide for single-table real-time sync tasks
For more information about the configuration process, see Configure a real-time sync task in Data Integration and Configure a real-time sync task in DataStudio.
Configuration guide for whole-database synchronization
For more information about the configuration process, see Whole-database offline sync task and Whole-database real-time sync task.
FAQ
Is there a limit on the number of OSS files that can be read?
How do I handle dirty data when reading a CSV file with multiple delimiters?
Appendix: Script demos and parameter descriptions
Configure a batch synchronization task by using the code editor
If you want to configure a batch synchronization task by using the code editor, you must configure the related parameters in the script based on the unified script format requirements. For more information, see Configure a task in the code editor. The following information describes the parameters that you must configure for data sources when you configure a batch synchronization task by using the code editor.
Reader script demo: General example
{
"type":"job",
"version":"2.0",// The version number.
"steps":[
{
"stepType":"oss",// The plugin name.
"parameter":{
"nullFormat":"",// Defines the string that represents null.
"compress":"",// The text compression type.
"datasource":"",// The data source.
"column":[// The fields.
{
"index":0,// The column index.
"type":"string"// The data type.
},
{
"index":1,
"type":"long"
},
{
"index":2,
"type":"double"
},
{
"index":3,
"type":"boolean"
},
{
"format":"yyyy-MM-dd HH:mm:ss", // The time format.
"index":4,
"type":"date"
}
],
"skipHeader":"",// Skips the header row if the CSV-like file has one.
"encoding":"",// The encoding format.
"fieldDelimiter":",",// The column delimiter.
"fileFormat": "",// The text file format.
"object":[]// The object prefix.
},
"name":"Reader",
"category":"reader"
},
{
"stepType":"stream",
"parameter":{},
"name":"Writer",
"category":"writer"
}
],
"setting":{
"errorLimit":{
"record":""// The number of error records.
},
"speed":{
"throttle":true,// If throttle is set to false, the mbps parameter does not take effect, and the rate is not limited. If throttle is set to true, the rate is limited.
"concurrent":1, // The number of concurrent jobs.
"mbps":"12"// The rate limit. 1 mbps is equal to 1 MB/s.
}
},
"order":{
"hops":[
{
"from":"Reader",
"to":"Writer"
}
]
}
}Reader script demo: Read ORC or Parquet files from OSS
You can read files in ORC or Parquet format from OSS by reusing the HDFS Reader. In addition to the existing OSS Reader parameters, extended configuration parameters such as Path (for ORC) and FileFormat (for ORC and Parquet) are also used.
The following example shows how to read an ORC file from OSS.
{ "stepType": "oss", "parameter": { "datasource": "", "fileFormat": "orc", "path": "/tests/case61/orc__691b6815_9260_4037_9899_****", "column": [ { "index": 0, "type": "long" }, { "index": "1", "type": "string" }, { "index": "2", "type": "string" } ] } }The following example shows how to read a Parquet file from OSS.
{ "type":"job", "version":"2.0", "steps":[ { "stepType":"oss", "parameter":{ "nullFormat":"", "compress":"", "fileFormat":"parquet", "path":"/*", "parquetSchema":"message m { optional BINARY registration_dttm (UTF8); optional Int64 id; optional BINARY first_name (UTF8); optional BINARY last_name (UTF8); optional BINARY email (UTF8); optional BINARY gender (UTF8); optional BINARY ip_address (UTF8); optional BINARY cc (UTF8); optional BINARY country (UTF8); optional BINARY birthdate (UTF8); optional DOUBLE salary; optional BINARY title (UTF8); optional BINARY comments (UTF8); }", "column":[ { "index":"0", "type":"string" }, { "index":"1", "type":"long" }, { "index":"2", "type":"string" }, { "index":"3", "type":"string" }, { "index":"4", "type":"string" }, { "index":"5", "type":"string" }, { "index":"6", "type":"string" }, { "index":"7", "type":"string" }, { "index":"8", "type":"string" }, { "index":"9", "type":"string" }, { "index":"10", "type":"double" }, { "index":"11", "type":"string" }, { "index":"12", "type":"string" } ], "skipHeader":"false", "encoding":"UTF-8", "fieldDelimiter":",", "fieldDelimiterOrigin":",", "datasource":"wpw_demotest_oss", "envType":0, "object":[ "wpw_demo/userdata1.parquet" ] }, "name":"Reader", "category":"reader" }, { "stepType":"odps", "parameter":{ "partition":"dt=${bizdate}", "truncate":true, "datasource":"0_odps_wpw_demotest", "envType":0, "column":[ "id" ], "emptyAsNull":false, "table":"wpw_0827" }, "name":"Writer", "category":"writer" } ], "setting":{ "errorLimit":{ "record":"" }, "locale":"zh_CN", "speed":{ "throttle":false, "concurrent":2 } }, "order":{ "hops":[ { "from":"Reader", "to":"Writer" } ] } }
Reader script parameters
Parameter | Description | Required | Default value |
datasource | The name of the data source. The value of this parameter must be the same as the name of the data source that you add in the code editor. | Yes | None |
Object | Specifies one or more objects to sync from OSS. You can specify the object using a full path, a path with wildcard characters, or a path with dynamic parameters. 1. Configuration methods
Important
2. Concurrent read mechanism and performance The way you configure the path determines the concurrency and performance of data extraction:
| Yes | None |
parquetSchema | This parameter is required only when you read Parquet files from OSS. It takes effect only when fileFormat is set to parquet. This parameter describes the data types in the Parquet file. Ensure that the configuration is in valid JSON format. The format of `parquetSchema` is as follows:
The following is a configuration example. | No | None |
column | The list of fields to read. `type` specifies the data type of the source data. `index` specifies the column number (starting from 0) in the text file. `value` specifies that the current type is a constant. The data for this column is not read from the source file but is automatically generated based on the `value`. By default, you can read all data as the String type. The configuration is as follows. You can also specify the column field information. The configuration is as follows. Note For the column information you specify, `type` is required. You must specify either `index` or `value`. | Yes | All data is read as the STRING type. |
fileFormat | The file format of the source object in OSS. Valid values are `csv` and `text`. Both formats support custom delimiters. | Yes | csv |
fieldDelimiter | The column delimiter used to read the file. Note When OSS Reader reads data, you must specify a column delimiter. If you do not specify one, the default is a comma (,). The comma is also the default value on the configuration page. If the delimiter is not a visible character, enter its Unicode encoding. For example, \u001b or \u007c. | Yes | , |
lineDelimiter | The row delimiter. Note This parameter is valid only when `fileFormat` is set to `text`. | No | None |
compress | The compression format of the text file. The default value is empty, which means no compression. Supported formats are gzip, bzip2, and zip. | No | No compression |
encoding | The encoding format of the source file. | No | utf-8 |
nullFormat | A text file cannot use a standard string to define a null pointer. Use `nullFormat` to define which strings represent null. For example:
| No | None |
skipHeader | Skips the header row in a CSV-like file. The default value is false. The skipHeader parameter is not supported for compressed files. | No | false |
csvReaderConfig | The parameters for reading a CSV file. This is a map. The CsvReader is used to read CSV files. If you do not configure these parameters, default values are used. | No | None |
Writer script demo: General example
{
"type":"job",
"version":"2.0",
"steps":[
{
"stepType":"stream",
"parameter":{},
"name":"Reader",
"category":"reader"
},
{
"stepType":"oss",// The plugin name.
"parameter":{
"nullFormat":"",// Defines the string that represents null.
"dateFormat":"",// The date format.
"datasource":"",// The data source.
"writeMode":"",// The write mode.
"writeSingleObject":"false", // Specifies whether to write the synchronized data to a single OSS file.
"encoding":"",// The encoding format.
"fieldDelimiter":",",// The column delimiter.
"fileFormat":"",// The text file format.
"object":""// The object prefix.
},
"name":"Writer",
"category":"writer"
}
],
"setting":{
"errorLimit":{
"record":"0"// The number of error records.
},
"speed":{
"throttle":true,// If throttle is set to false, the mbps parameter does not take effect, and the rate is not limited. If throttle is set to true, the rate is limited.
"concurrent":1, // The number of concurrent jobs.
"mbps":"12"// The rate limit. 1 mbps is equal to 1 MB/s.
}
},
"order":{
"hops":[
{
"from":"Reader",
"to":"Writer"
}
]
}
}Writer script demo: Write ORC or Parquet files to OSS
You can write ORC or Parquet files to OSS by reusing the HDFS Writer. In addition to the existing OSS Writer parameters, you can use extended parameters such as Path and FileFormat. For more information about these parameters, see HDFS Writer.
The following examples show how to write ORC or Parquet files to OSS:
The following code is for reference only. Modify the parameters according to your column names and data types. Do not copy the code directly.
Write an ORC file to OSS
To write an ORC file, you must use the code editor. Set fileFormat to
orc, set path to the path of the file to be written, and configure column in the format{"name": "your column name", "type": "your column type"}.The following ORC types are supported for writing:
Field type
Offline write to OSS (ORC format)
TINYINT
Support
SMALLINT
Support
INT
Support
BIGINT
Support
FLOAT
Support
DOUBLE
Supported
TIMESTAMP
Supported
DATE
Supported
VARCHAR
Support
STRING
Support
CHAR
Support
BOOLEAN
Support
DECIMAL
Support
BINARY
Support
{ "stepType": "oss", "parameter": { "datasource": "", "fileFormat": "orc", "path": "/tests/case61", "fileName": "orc", "writeMode": "append", "column": [ { "name": "col1", "type": "BIGINT" }, { "name": "col2", "type": "DOUBLE" }, { "name": "col3", "type": "STRING" } ], "writeMode": "append", "fieldDelimiter": "\t", "compress": "NONE", "encoding": "UTF-8" } }Write a Parquet file to OSS
{ "stepType": "oss", "parameter": { "datasource": "", "fileFormat": "parquet", "path": "/tests/case61", "fileName": "test", "writeMode": "append", "fieldDelimiter": "\t", "compress": "SNAPPY", "encoding": "UTF-8", "parquetSchema": "message test { required int64 int64_col;\n required binary str_col (UTF8);\nrequired group params (MAP) {\nrepeated group key_value {\nrequired binary key (UTF8);\nrequired binary value (UTF8);\n}\n}\nrequired group params_arr (LIST) {\nrepeated group list {\nrequired binary element (UTF8);\n}\n}\nrequired group params_struct {\nrequired int64 id;\n required binary name (UTF8);\n }\nrequired group params_arr_complex (LIST) {\nrepeated group list {\nrequired group element {\n required int64 id;\n required binary name (UTF8);\n}\n}\n}\nrequired group params_complex (MAP) {\nrepeated group key_value {\nrequired binary key (UTF8);\nrequired group value {\nrequired int64 id;\n required binary name (UTF8);\n}\n}\n}\nrequired group params_struct_complex {\nrequired int64 id;\n required group detail {\nrequired int64 id;\n required binary name (UTF8);\n}\n}\n}", "dataxParquetMode": "fields" } }
Writer script parameters
Parameter | Description | Required | Default value |
datasource | The name of the data source. The value of this parameter must be the same as the name of the data source that you add in the code editor. | Yes | None |
object | The name of the file to be written to OSS. OSS uses file names to simulate a directory structure. OSS has the following limits on object names:
If you do not want a random UUID appended, set | Yes | None |
ossBlockSize | The size of each data block in MB. The default value is 16. This parameter is supported only when the `fileFormat` is parquet or ORC. You can configure this parameter at the same level as the object parameter. Because multipart upload in OSS supports a maximum of 10,000 blocks, the default single file size is limited to 160 GB. If the number of blocks exceeds the limit, you can increase the block size to support larger file uploads. | No | 16 |
writeMode | Specifies how to handle existing data before writing:
| Yes | None |
writeSingleObject | Specifies whether to write data to a single file:
Note
| No | false |
fileFormat | The format of the object file. The following formats are supported:
| No | text |
compress | The compression format of the object file written to OSS. This parameter must be configured in the code editor. Important CSV and TEXT file types do not support compression. Parquet and ORC files only support SNAPPY compression. | No | None |
fieldDelimiter | The column delimiter. | No | , |
encoding | Configure the file encoding. | No | utf-8 |
parquetSchema | This parameter is required when you write data to a Parquet file in OSS. It describes the structure of the object file. This parameter takes effect only when fileFormat is set to parquet. The format is as follows. The configuration items are as follows:
Note Each row setting must end with a semicolon, including the last row. The following is an example. | No | None |
nullFormat | A text file cannot use a standard string to define a null pointer. Use nullFormat to define the string that represents null. For example, if you set | No | None |
header | The header of the object file. Example: | No | None |
maxFileSize (Advanced configuration. This parameter is not supported in the codeless UI.) | The maximum size of a single object file in MB. The default value is 10,000 × 10 MB. This is similar to controlling the size of log files in log4j. When using multipart upload in OSS, each block is 10 MB (which is also the minimum granularity for log file rotation, meaning a `maxFileSize` less than 10 MB is treated as 10 MB). Each OSS InitiateMultipartUploadRequest supports a maximum of 10,000 blocks. When rotation occurs, the object name is formed by appending suffixes such as _1, _2, _3 to the original object prefix with a random UUID. Note
| No | 100,000 |
suffix (Advanced configuration. This parameter is not supported in the codeless UI.) | The suffix of the generated file name. For example, if you set suffix to .csv, the final file name will be fileName****.csv. | No | None |
Appendix: Conversion policy for Parquet data types
If you do not configure the `parquetSchema` parameter, DataWorks converts the data types of source fields based on the following policy.
Converted data type | Parquet type | Parquet logical type |
CHAR / VARCHAR / STRING | BINARY | UTF8 |
BOOLEAN | BOOLEAN | Not applicable |
BINARY / VARBINARY | BINARY | Not applicable |
DECIMAL | FIXED_LEN_BYTE_ARRAY | DECIMAL |
TINYINT | INT32 | INT_8 |
SMALLINT | INT32 | INT_16 |
INT/INTEGER | INT32 | Not applicable |
BIGINT | INT64 | Not applicable |
FLOAT | FLOAT | Not applicable |
DOUBLE | DOUBLE | Not applicable |
DATE | INT32 | DATE |
TIME | INT32 | TIME_MILLIS |
TIMESTAMP/DATETIME | INT96 | Not applicable |