This topic describes the release notes for inference-nv-pytorch 25.07.
Main features and fixed bug
Updated frameworks
vLLM upgraded to v0.9.2.
SGLang upgraded to v0.4.9.post1.
deepgpu-comfyui upgraded to v1.1.7.
Bug fix
The vLLM 0.9.2 framework previously encountered a PPMissingLayer error when running the DeepSeek-R1 model in a multi-node (dual-machine) configuration. This issue has been resolved by incorporating the fix from the upstream pull request: https://github.com/vllm-project/vllm/pull/20665/files. This fix is pre-applied in the current image, ensuring stable distributed inference.
Content
inference-nv-pytorch | inference-nv-pytorch | |
Image tag | 25.07-vllm0.9.2-pytorch2.7-cu128-20250714-serverless | 25.07-sglang0.4.9-pytorch2.7-cu128-20250710-serverless |
Scenario | LLM inference | LLM inference |
Framework | pytorch | pytorch |
Requirement | NVIDIA Driver release ≥570 | NVIDIA Driver release ≥570 |
System components |
|
|
Assets
Public images
egslingjun-registry.cn-wulanchabu.cr.aliyuncs.com/egslingjun/inference-nv-pytorch:25.07-vllm0.9.2-pytorch2.7-cu128-20250714-serverless
egslingjun-registry.cn-wulanchabu.cr.aliyuncs.com/egslingjun/inference-nv-pytorch:25.07-sglang0.4.9-pytorch2.7-cu128-20250710-serverless
VPC image
acs-registry-vpc.{region-id}.cr.aliyuncs.com/egslingjun/{image:tag}
{region-id}indicates the region where your Alibaba Cloud Container Compute Service (ACS) is activated, such as cn-beijing or cn-wulanchabu.{image:tag}indicates the name and tag of the image.
VPC image pulling is currently supported only in the China (Beijing) region.
The inference-nv-pytorch:25.07-vllm0.9.2-pytorch2.7-cu128-20250714-serverless and inference-nv-pytorch:25.07-sglang0.4.9-pytorch2.7-cu128-20250710-serverless images are suitable for ACS clusters and Lingjun multi-tenant clusters, but not supported on Lingjun single-tenant clusters.
Driver requirement
For CUDA 12.8 images: NVIDIA Driver 570 or later.
Quick start
This example demonstrates how to pull the inference-nv-pytorch image and run an inference test using the Qwen2.5-7B-Instruct model.
For ACS users: When deploying in ACS, select the image from the Artifact Center in the console or specify it in your YAML configuration. For guidance, see:
Pull the image.
docker pull egslingjun-registry.cn-wulanchabu.cr.aliyuncs.com/egslingjun/inference-nv-pytorch:[tag]Download a model (modelscope format).
pip install modelscope cd /mnt modelscope download --model Qwen/Qwen2.5-7B-Instruct --local_dir ./Qwen2.5-7B-InstructLaunch the container.
docker run -d -t --network=host --privileged --init --ipc=host \ --ulimit memlock=-1 --ulimit stack=67108864 \ -v /mnt/:/mnt/ \ egslingjun-registry.cn-wulanchabu.cr.aliyuncs.com/egslingjun/inference-nv-pytorch:[tag]Run inference test (vLLM).
Start the Server service.
python3 -m vllm.entrypoints.openai.api_server \ --model /mnt/Qwen2.5-7B-Instruct \ --trust-remote-code --disable-custom-all-reduce \ --tensor-parallel-size 1Test from the client side.
curl http://localhost:8000/v1/chat/completions \ -H "Content-Type: application/json" \ -d '{ "model": "/mnt/Qwen2.5-7B-Instruct", "messages": [ {"role": "system", "content": "You are a friendly AI assistant."}, {"role": "user", "content": "Please introduce deep learning."} ]}'For more information about how to work with vLLM, see vLLM.
Known Issue
The deepgpu-comfyui plugin, which accelerates video generation for Wanx models, currently supports only gn8is instance types.