All Products
Search
Document Center

Container Compute Service:inference-nv-pytorch 25.07

Last Updated:Dec 03, 2025

This topic describes the release notes for inference-nv-pytorch 25.07.

Main features and fixed bug

Updated frameworks

  • vLLM upgraded to v0.9.2.

  • SGLang upgraded to v0.4.9.post1.

  • deepgpu-comfyui upgraded to v1.1.7.

Bug fix

The vLLM 0.9.2 framework previously encountered a PPMissingLayer error when running the DeepSeek-R1 model in a multi-node (dual-machine) configuration. This issue has been resolved by incorporating the fix from the upstream pull request: https://github.com/vllm-project/vllm/pull/20665/files. This fix is pre-applied in the current image, ensuring stable distributed inference.

Content

inference-nv-pytorch

inference-nv-pytorch

Image tag

25.07-vllm0.9.2-pytorch2.7-cu128-20250714-serverless

25.07-sglang0.4.9-pytorch2.7-cu128-20250710-serverless

Scenario

LLM inference

LLM inference

Framework

pytorch

pytorch

Requirement

NVIDIA Driver release ≥570

NVIDIA Driver release ≥570

System components

  • Ubuntu 24.04

  • Python 3.12

  • Torch 2.7.1+cu128

  • CUDA 12.8

  • NCCL 2.27.5

  • accelerate 1.8.1

  • diffusers 0.34.0

  • deepgpu-comfyui 1.1.7

  • deepgpu-torch 0.0.24+torch2.7.0cu128

  • flash_attn 2.8.1

  • imageio 2.37.0

  • imageio-ffmpeg 0.6.0

  • ray 2.47.1

  • transformers 4.53.1

  • vllm 0.9.3.dev0+ga5dd03c1e.d20250709

  • xgrammar 0.1.19

  • triton 3.3.1

  • Ubuntu 24.04

  • Python 3.12

  • Torch 2.7.1+cu128

  • CUDA 12.8

  • NCCL 2.27.5

  • accelerate 1.8.1

  • diffusers 0.34.0

  • deepgpu-comfyui 1.1.7

  • deepgpu-torch 0.0.24+torch2.7.0cu128

  • flash_attn 2.8.1

  • flash_mla 1.0.0+9edee0c

  • flashinfer-python 0.2.7.post1

  • imageio 2.37.0

  • imageio-ffmpeg 0.6.0

  • transformers 4.53.0

  • sgl-kernel 0.2.4

  • sglang 0.4.9.post1

  • xgrammar 0.1.20

  • triton 3.3.1

  • torchao 0.9.0

Assets

Public images

  • egslingjun-registry.cn-wulanchabu.cr.aliyuncs.com/egslingjun/inference-nv-pytorch:25.07-vllm0.9.2-pytorch2.7-cu128-20250714-serverless

  • egslingjun-registry.cn-wulanchabu.cr.aliyuncs.com/egslingjun/inference-nv-pytorch:25.07-sglang0.4.9-pytorch2.7-cu128-20250710-serverless

VPC image

  • acs-registry-vpc.{region-id}.cr.aliyuncs.com/egslingjun/{image:tag}

    {region-id} indicates the region where your Alibaba Cloud Container Compute Service (ACS) is activated, such as cn-beijing or cn-wulanchabu.
    {image:tag} indicates the name and tag of the image.
Important

VPC image pulling is currently supported only in the China (Beijing) region.

Note

The inference-nv-pytorch:25.07-vllm0.9.2-pytorch2.7-cu128-20250714-serverless and inference-nv-pytorch:25.07-sglang0.4.9-pytorch2.7-cu128-20250710-serverless images are suitable for ACS clusters and Lingjun multi-tenant clusters, but not supported on Lingjun single-tenant clusters.

Driver requirement

For CUDA 12.8 images: NVIDIA Driver 570 or later.

Quick start

This example demonstrates how to pull the inference-nv-pytorch image and run an inference test using the Qwen2.5-7B-Instruct model.

  1. Pull the image.

    docker pull egslingjun-registry.cn-wulanchabu.cr.aliyuncs.com/egslingjun/inference-nv-pytorch:[tag]
  2. Download a model (modelscope format).

    pip install modelscope
    cd /mnt
    modelscope download --model Qwen/Qwen2.5-7B-Instruct --local_dir ./Qwen2.5-7B-Instruct
  3. Launch the container.

    docker run -d -t --network=host --privileged --init --ipc=host \
    --ulimit memlock=-1 --ulimit stack=67108864  \
    -v /mnt/:/mnt/ \
    egslingjun-registry.cn-wulanchabu.cr.aliyuncs.com/egslingjun/inference-nv-pytorch:[tag]
  4. Run inference test (vLLM).

    1. Start the Server service.

      python3 -m vllm.entrypoints.openai.api_server \
      --model /mnt/Qwen2.5-7B-Instruct \
      --trust-remote-code --disable-custom-all-reduce \
      --tensor-parallel-size 1
    2. Test from the client side.

      curl http://localhost:8000/v1/chat/completions \
          -H "Content-Type: application/json" \
          -d '{
          "model": "/mnt/Qwen2.5-7B-Instruct",  
          "messages": [
          {"role": "system", "content": "You are a friendly AI assistant."},
          {"role": "user", "content": "Please introduce deep learning."}
          ]}'

      For more information about how to work with vLLM, see vLLM.

Known Issue

The deepgpu-comfyui plugin, which accelerates video generation for Wanx models, currently supports only gn8is instance types.