All Products
Search
Document Center

Container Compute Service:inference-nv-pytorch 25.06

Last Updated:Jun 20, 2025

This topic describes the release notes for inference-nv-pytorch 25.06.

Main features and bugs fixed

Main features

  • vLLM is updated to v0.9.0.1.

  • SGLang is updated to v0.4.7.

  • The deepgpu-comfyui plug-in is introduced, which can be used to accelerate ComfyUI services on L20 for Wan2.1 and FLUX model reasoning. Compared with PyTorch, the overall performance is improved by 8% to 40%.

Bugs fixed

None.

Content

inference-nv-pytorch

inference-nv-pytorch

Image tag

25.06-vllm0.9.0.1-pytorch2.7-cu128-20250609-serverless

25.06-sglang0.4.7-pytorch2.7-cu128-20250611-serverless

Scenarios

LLM reasoning

LLM inference

Framework

PyTorch

pytorch

Requirements

NVIDIA Driver release >= 570

NVIDIA Driver release >= 550

System components

  • Ubuntu 24.04

  • Python 3.12

  • Torch 2.7.1+cu128

  • CUDA 12.8

  • NCCL 2.27.3

  • accelerate 1.7.0

  • diffusers 0.33.1

  • deepgpu-comfyui 1.1.5

  • deepgpu-torch 0.0.21+torch2.7.0cu128

  • flash_attn 2.7.4.post1

  • imageio 2.37.0

  • imageio-ffmpeg 0.6.0

  • ray 2.46.0

  • transformers 4.52.4

  • vllm 0.9.0.2.dev0+g5fbbfe9a4.d20250609

  • xgrammar 0.1.19

  • triton 3.3.1

  • Ubuntu 22.04

  • Python 3.10

  • Torch 2.7.1+cu128

  • CUDA 12.8

  • NCCL 2.27.3

  • accelerate 1.7.0

  • diffusers 0.33.1

  • deepgpu-comfyui 1.1.5

  • deepgpu-torch 0.0.21+torch2.7.0cu128

  • flash_attn 2.7.4.post1

  • flash_mla 1.0.0+9edee0c

  • flashinfer-python 0.2.6.post1

  • imageio 2.37.0

  • imageio-ffmpeg 0.6.0

  • ray 2.46.0

  • transformers 4.52.3

  • sgl-kernel 0.1.7

  • sglang 0.4.7

  • xgrammar 0.1.19

  • triton 3.3.1

  • torchao 0.9.0

Assets

Publicly accessible images

  • egslingjun-registry.cn-wulanchabu.cr.aliyuncs.com/egslingjun/inference-nv-pytorch:25.06-vllm0.9.0.1-pytorch2.7-cu128-20250609-serverless

  • egslingjun-registry.cn-wulanchabu.cr.aliyuncs.com/egslingjun/inference-nv-pytorch:25.06-sglang0.4.7-pytorch2.7-cu128-20250611-serverless

VPC image

  • acs-registry-vpc.{region-id}.cr.aliyuncs.com/egslingjun/{image:tag}

    {region-id} indicates the region where your ACS is activated, such as cn-beijing and cn-wulanchabu.
    {image:tag} indicates the name and tag of the image.
Important

Currently, you can pull only images in the China (Beijing) region over a VPC.

Note

The 25.06-vllm0.9.0.1-pytorch2.7-cu128-20250609-serverless and 25.06-sglang0.4.7-pytorch2.7-cu128-20250611-serverless images are applicable to ACS services and FLUX multi-tenant services, but are inapplicable to FLUX single-tenant services.

Driver requirements

For CUDA 12.8 images: NVIDIA driver 570 and later.

Quick Start

The following example uses only Docker to pull the inference-nv-pytorch image and uses the Qwen2.5-7B-Instruct model to test inference services.

Note

To use the inference-nv-pytorch image in ACS, you must select the image from the artifact center page of the console where you create workloads, or specify the image in a YAML file. For more information, refer to the following topics:

  1. Pull the inference container image.

    docker pull egslingjun-registry.cn-wulanchabu.cr.aliyuncs.com/egslingjun/inference-nv-pytorch:[tag]
  2. Download an open source model in the modelscope format.

    pip install modelscope
    cd /mnt
    modelscope download --model Qwen/Qwen2.5-7B-Instruct --local_dir ./Qwen2.5-7B-Instruct
  3. Run the following command to log on to the container.

    docker run -d -t --network=host --privileged --init --ipc=host \
    --ulimit memlock=-1 --ulimit stack=67108864  \
    -v /mnt/:/mnt/ \
    egslingjun-registry.cn-wulanchabu.cr.aliyuncs.com/egslingjun/inference-nv-pytorch:[tag]
  4. Run an inference test to test the inference conversation feature of vLLM.

    1. Start the Server service.

      python3 -m vllm.entrypoints.openai.api_server \
      --model /mnt/Qwen2.5-7B-Instruct \
      --trust-remote-code --disable-custom-all-reduce \
      --tensor-parallel-size 1
    2. Test on the client.

      curl http://localhost:8000/v1/chat/completions \
          -H "Content-Type: application/json" \
          -d '{
          "model": "/mnt/Qwen2.5-7B-Instruct",  
          "messages": [
          {"role": "system", "content": "You are a friendly AI assistant."},
          {"role": "user", "content": "Please introduce deep learning."}
          ]}'

      For more information about how to work with vLLM, see vLLM.

Known issues

  • The deepgpu-comfyui plug-in supports only GN8IS for accelerating video generation based on the Wanx model.