This topic describes an example of using Unique in MapReduce.
Prerequisites
Complete the environment configuration for testing, see Getting started.
Preparations
Prepare the JAR package of the test program. In this topic, the JAR package is named mapreduce-examples.jar and stored in the bin\data\resources directory in the local installation path of MaxCompute.
Prepare test tables and resources for Unique.
Create test tables.
CREATE TABLE ss_in(key BIGINT, value BIGINT); CREATE TABLE ss_out(key BIGINT, value BIGINT);Add test resources.
-- When adding the JAR package for the first time, you can ignore the -f flag. add jar data\resources\mapreduce-examples.jar -f;
Use Tunnel to import the
data.txtfile from the bin directory of the MaxCompute client into thess_intable.tunnel upload data.txt ss_in;The following data is imported to the ss_in table:
1,1 1,1 2,2 2,2
Procedure
Run Unique on the MaxCompute client.
jar -resources mapreduce-examples.jar -classpath data\resources\mapreduce-examples.jar
com.aliyun.odps.mapred.open.example.Unique ss_in ss_out key;Expected result
The job runs normally. The following data is returned in the ss_out table:
+------------+------------+
| key | value |
+------------+------------+
| 1 | 1 |
| 2 | 2 |
+------------+------------+Sample code
For information about Project Object Model (POM) dependencies, see Precautions.
package com.aliyun.odps.mapred.open.example;
import java.io.IOException;
import java.util.Iterator;
import com.aliyun.odps.data.Record;
import com.aliyun.odps.data.TableInfo;
import com.aliyun.odps.mapred.JobClient;
import com.aliyun.odps.mapred.MapperBase;
import com.aliyun.odps.mapred.ReducerBase;
import com.aliyun.odps.mapred.TaskContext;
import com.aliyun.odps.mapred.conf.JobConf;
import com.aliyun.odps.mapred.utils.InputUtils;
import com.aliyun.odps.mapred.utils.OutputUtils;
import com.aliyun.odps.mapred.utils.SchemaUtils;
/**
* Unique Remove duplicate words
*
**/
public class Unique {
public static class OutputSchemaMapper extends MapperBase {
private Record key;
private Record value;
@Override
public void setup(TaskContext context) throws IOException {
key = context.createMapOutputKeyRecord();
value = context.createMapOutputValueRecord();
}
@Override
public void map(long recordNum, Record record, TaskContext context)
throws IOException {
long left = 0;
long right = 0;
if (record.getColumnCount() > 0) {
left = (Long) record.get(0);
if (record.getColumnCount() > 1) {
right = (Long) record.get(1);
}
key.set(new Object[] { (Long) left, (Long) right });
value.set(new Object[] { (Long) left, (Long) right });
context.write(key, value);
}
}
}
public static class OutputSchemaReducer extends ReducerBase {
private Record result = null;
@Override
public void setup(TaskContext context) throws IOException {
result = context.createOutputRecord();
}
@Override
public void reduce(Record key, Iterator<Record> values, TaskContext context)
throws IOException {
result.set(0, key.get(0));
while (values.hasNext()) {
Record value = values.next();
result.set(1, value.get(1));
}
context.write(result);
}
}
public static void main(String[] args) throws Exception {
if (args.length > 3 || args.length < 2) {
System.err.println("Usage: unique <in> <out> [key|value|all]");
System.exit(2);
}
String ops = "all";
if (args.length == 3) {
ops = args[2];
}
/** The input group of Reduce is determined by the value of the setOutputGroupingColumns parameter. If this parameter is not specified, the default value MapOutputKeySchema is used. */
// Key Unique
if (ops.equals("key")) {
JobConf job = new JobConf();
job.setMapperClass(OutputSchemaMapper.class);
job.setReducerClass(OutputSchemaReducer.class);
job.setMapOutputKeySchema(SchemaUtils.fromString("key:bigint,value:bigint"));
job.setMapOutputValueSchema(SchemaUtils.fromString("key:bigint,value:bigint"));
job.setPartitionColumns(new String[] { "key" });
job.setOutputKeySortColumns(new String[] { "key", "value" });
job.setOutputGroupingColumns(new String[] { "key" });
job.set("tablename2", args[1]);
job.setNumReduceTasks(1);
job.setInt("table.counter", 0);
InputUtils.addTable(TableInfo.builder().tableName(args[0]).build(), job);
OutputUtils.addTable(TableInfo.builder().tableName(args[1]).build(), job);
JobClient.runJob(job);
}
// Key&Value Unique
if (ops.equals("all")) {
JobConf job = new JobConf();
job.setMapperClass(OutputSchemaMapper.class);
job.setReducerClass(OutputSchemaReducer.class);
job.setMapOutputKeySchema(SchemaUtils.fromString("key:bigint,value:bigint"));
job.setMapOutputValueSchema(SchemaUtils.fromString("key:bigint,value:bigint"));
job.setPartitionColumns(new String[] { "key" });
job.setOutputKeySortColumns(new String[] { "key", "value" });
job.setOutputGroupingColumns(new String[] { "key", "value" });
job.set("tablename2", args[1]);
job.setNumReduceTasks(1);
job.setInt("table.counter", 0);
InputUtils.addTable(TableInfo.builder().tableName(args[0]).build(), job);
OutputUtils.addTable(TableInfo.builder().tableName(args[1]).build(), job);
JobClient.runJob(job);
}
// Value Unique
if (ops.equals("value")) {
JobConf job = new JobConf();
job.setMapperClass(OutputSchemaMapper.class);
job.setReducerClass(OutputSchemaReducer.class);
job.setMapOutputKeySchema(SchemaUtils.fromString("key:bigint,value:bigint"));
job.setMapOutputValueSchema(SchemaUtils.fromString("key:bigint,value:bigint"));
job.setPartitionColumns(new String[] { "value" });
job.setOutputKeySortColumns(new String[] { "value" });
job.setOutputGroupingColumns(new String[] { "value" });
job.set("tablename2", args[1]);
job.setNumReduceTasks(1);
job.setInt("table.counter", 0);
InputUtils.addTable(TableInfo.builder().tableName(args[0]).build(), job);
OutputUtils.addTable(TableInfo.builder().tableName(args[1]).build(), job);
JobClient.runJob(job);
}
}
}