Community Blog Database Tuning Best Practices - A Success Story

Database Tuning Best Practices - A Success Story

SaaS service providers must always consider the large number of users when designing an appropriate business architecture.



SaaS service providers must always consider the large number of users when designing an appropriate business architecture. The large user base and massive user data require both efficiency and stability in the infrastructure construction. However, traditional infrastructure construction programs are costly, laborious, and involve complex implementation.

As a result, a more economical cloud service platform that is more convenient for extension has become the first choice for SaaS providers. However, to build a high-performance SaaS application, cloud service infrastructure alone is not enough. The key to determining product performance is in designing and implementing a system architecture that complies with specific business needs using the cloud service platform.

Hangzhou HUPUN Network Technology Co. Ltd, a start-up SaaS provider, faced these problems in the early stages of development. This post elaborates how Hangzhou HUPUN Network Technology utilized Alibaba Cloud services and adopted relatively cost-effective solutions to solve database usage problems for massive users.

Note: Some of the Alibaba Cloud products mentioned in this article are not yet available for the international market.


The overall architecture of our SaaS e-commerce ERP is based on the Alibaba Cloud service platform, as shown in Figure 1.


  • We use the Server Load Balancer as the access portal to web clusters, and for traffic distribution for multiple web servers. The construction of the Server Load Balancer is based on the cluster. It is easy to alter its configuration at any time and payment can be based on the bandwidth consumption. Server Load Balancer not only implements a mature load-balancing scheme for us but also allows for more possibilities for the web cluster with its stability and flexibility.
  • The Alibaba Cloud platform allows easy configuration of Multiple ECS (Elastic Compute Service) instances on the backend as well as the deployment of all major applications and services occur on the ECS instances. In addition to elastic resizing, ECS also provides security protection and snapshot backup, securing a very robust solution for server security and disaster recovery, which makes up for the shortcomings in business-based entrepreneurial teams like ours. Additionally, ECS introduces multi-line access to the backbone network to ensure network stability and performance, allowing the user to have smooth access to applications or services from any network.
  • The DB cluster consists of multiple RDS (Relational Database Service) instances. RDS is a cloud database that is easy to use and shares identical usage with self-deployed databases. Its mature, dual-server, hot standby mechanism is isolated with the underlying resources, ensuring the smooth operation of our databases over the past two years. In addition, the powerful Intelligent Database (iDB) Cloud console and the professional Database Administrator (DBA) team support have provided many suggestions and help for us to monitor database operations, as well as locate and resolve database problems.
  • The Open Cache Service (OCS) uniformly stores the shared resources between clusters. We use OCS to store data routing and other business data with low real-timeliness requirements. Caching, as a very important part of our architectural performance, ensures stable and high-speed responses while coping with the pressure from all aspects of the entire cluster.

The scheme not only utilizes the advantages of Alibaba Cloud (no maintenance and wear of physical machines, flexible configuration upgrades, mature backup and snapshot solutions) but also avoids single points of failures that the system is prone to through a cluster architecture. Ideally, this improves the flexibility and availability of elastic system resizing.

For us, as a SaaS-oriented enterprise, data is concentrated and data volume is large. Therefore, databases are a key node in our overall structure, and ensuring the stability and performance of databases is our top priority.

When a user enters the rapid growth period, the stock data and growth rate of core business tables cannot be managed by a single database. Almost all single-database configurations are subject to physical performance bottlenecks. Even if you upgrade the configuration, there will be constraints on costs and resources. Therefore, we should give priority to database sharding as a feasible solution. The main analysis ideas are as follows.

  • Scenario: Business hotspot data continues to increase. The team has a certain database architecture accumulation to support independent research and development or is familiar with mature middleware (such as Corba).
  • Advantages: Low cost (you can use free open-source database clusters to replace large commercial databases); flexible expansion (by constantly adding new database shards); relatively evenly distributed data reads and writes to avoid single points of failure.
  • Disadvantages: R&D team needs to invest a lot of effort in database architecture and database cluster maintenance requires cost investment.

Considering the business characteristics, we finally adopted the more common horizontal splitting + vertical splitting policy in the industry, and independently completed the development data access encapsulation layer between DAO and JDBC.

Horizontal Split

The philosophy of horizontal split is to split data originally stored in a single RDS database into multiple databases by business ID (see Figure 2). After the split, the number and structure of tables are consistent among various databases. To carry out the horizontal split, you should first establish a unique business master table, i.e, data in all the other tables has direct or indirect master-slave relationships with the master table ID (the business ID), which implies that you can perform the split of all the data through the master table ID. We chose the user table as the master business table, and other business tables or their parent tables contain a user ID. Therefore, the goal of our data split is to store the data of different users into different databases.


After determining the split rules, the next step entails encapsulating the Spring data access encapsulation layer (DB Wrapper). DB Wrapper is between Data Access Object (DAO) and Java Database Connectivity (JDBC), and basic operations on the database through each business DAO will go through DB Wrapper. It mainly serves to make the changes to the database architecture transparent to the business layer. The business layer can call the database operation interface provided by DB Wrapper as it operates on a single database. The DB Wrapper encapsulation completely handles the logic determining the database on which to operate (see Figure 3).


DB Wrapper mainly provides the initialization and database operation interfaces for new users. When initializing a new user to the system, DB Wrapper first needs to determine load distribution of various databases in the system dynamically. A rough calculation will determine the number of users of various databases. For example, there are four databases in total, and you can decide on the target database based on the user_id% 4. Then you can dig the distribution of core business data. The specific allocation algorithm should be set based on the business (such as considering the average orders of different users). After the comprehensive calculation of the pressure of various databases, proceed to identify the target database with the smallest pressure through analysis, and the new user data stored in the specified target database, with the routing information updated at the same time.

When the user completes the initialization and starts business operations, the business layer will call the operation interface of DB Wrapper. After DB Wrapper receives the request, it will match the router based on the User_id passed in from the business layer to determine the final RDS instance and database on which to operate. After making the judgment, the next task will be establishing connections and executing the requests systematically. Specific code implementation requires their combination with their respective persistence layer framework and a developer who has made some research on the persistence layer framework should be able to complete the process.

In this way, the overall data pressure of system users exhibits a relatively even distribution to multiple RDS instances and databases. This is indeed a very effective scheme, especially for tables with a large and fast-growing data size. However, in the follow-up implementation process, we found that the business pressure from a single user might occasionally get more prominent. To solve this issue, we can use human intervention, such as migrating data to a separate database, to fine-tune the database pressure. Of course, the final solution will constantly involve tuning our routing algorithms.

After data splitting, it is inevitable to consider the processing of data dictionaries (DD) and data routers (Router). We will put all the data dictionaries and routers into a separate database for now. Note that the database is only one implementation approach of the two businesses. Generally, we can also process these businesses by combining the databases with the distributed cache (we chose OCS). For all the possible single points of failures, the reserved expansion scheme is a horizontal split or the creation of a read-only node (read-only nodes can utilize the newly provided read-only instance by RDS which is still in the beta phase).

Vertical Split

Vertical split is simpler than horizontal split. In vertical split, tables from a single database are grouped based on the degree of business coupling, and then split into multiple databases (see Figure 4). After the split, the table structures and business meanings in various databases will vary greatly with each other. Although the rules are simple and easy to implement, vertical split always involves the breakdown of some associations. In actual operations, basic resources often appear in various business scenarios, resulting in the need of splitting them into multiple databases. Therefore, you need to make multiple queries to the business layer and process data in the memory to achieve the effect of a database join.


Vertical split also requires DB Wrapper, but the encapsulation rules vary slightly with that for the horizontal split. You need to establish different DB Wrappers for different businesses. The DB Wrapper is no longer unperceivable to the business layer, and the business layer should use a targeted DB Wrapper for a business scenario. The implementation of a single DB Wrapper is consistent with that in the horizontal split.

The advantage of vertical split is that the overall business data is divided into several relatively independent segments, isolating the performance impacts between different businesses. Furthermore, vertical split makes business databases more concentrated, making it easier to find the master business table and perform horizontal split.

We currently apply vertical split to solve mainly data routing (including the user's basic information), data dictionary module, and common cold data problems. Cold data processing has always been a common problem in the industry (in fact, the cold data division is also horizontal split). We currently adopt the centralized storage solution, i.e. migrating the identified cold data increment to a database through a self-developed migration program as per our cold data partitioning approach. This scheme not only limits the impact of operations on the cold data to the hotspot data but also provides more convenient conditions for big data mining. The use of relatively independent cold data storage structures can facilitate the adoption of more efficient, less costly storage media. Of course, there are some potential problems with the scheme – what if the cold database is full? At present, our backup plan is to consider other forms of storage for the horizontal split of history databases.

Combining Horizontal Split with Vertical Split

Splitting has always been a keyword for database optimization (whether in database table structure or SQL script), and it is the only way for every high-concurrency product. The core of the split solution lies in the ability to expand the load capacity of the system flexibly by adding more RDS instances and databases (we can always deploy multiple databases on the same RDS instance to save costs). In the database architecture, we use horizontal split and vertical split in combination, and the order of the two depends on the specific circumstances. In general, vertical split is easier and can pave the way for horizontal split by facilitating the extraction of the master table. Furthermore, after the vertical split, you can perform horizontal split on tables with high pressure while keeping the single database structure for tables with slow business growth, thereby improving the efficiency of the split and reducing the implementation cost (see Figure 5).


In horizontal split, we configure the routers by business ID (user) only, so that the structures in various databases are consistent. This keeps the original business logic and implementations while avoiding cross-database associations, greatly reducing the implementation costs.

Although there are various benefits to splitting, control of distributed transactions are generally at the mercy of optimistic locks through the business layer. This is because of the high implementation complexity of splitting, and the poor availability of distributed transactions and cross-database joins. Furthermore, the cross-database associations between tables must be broken, otherwise, the performance and implementation complexity will both exceed the acceptable range. There is also a need to process cross-database joining and grouping at the business layer. At present, we adopt batch query and result assembly in the business layer.

Prior to the launch of Alibaba Cloud DRDS (distributed database) products, our team had to develop the underlying structure of the databases without any external assistance. Fortunately, with the successful launch of DRDS, our team no longer needs to reinvent the wheel, enables us to focus more on the core business.

Minor Improvements for Great Accomplishments

Despite the optimizations in the architecture, often some unsatisfactory performance issues persist in the product development. In the Alibaba Cloud support center and forum, we can also see other business-style teams providing feedback about similar issues during the use of RDS. There are debates on whether the issues are the result of the problematic isolation of underlying resources of RDS. This leads to competition between multiple users who share resources, thus further leading to RDS performance problems. However, under the Alibaba Cloud DBA guidance and assistance, we found that the actual cause lies in the uncontrolled usage of the database in the product design. With the increase in concurrency pressure and data volume, minor performance problems are exposed and amplified.

Eliminating Bad Habits in Database Operations on the Business Layer

  • Scenario: When database performance has some problems, we should troubleshoot the issue from the business layer.
  • Advantages: Reducing the direct pressure on the database is quicker and more effective than implementing the database optimization scheme.
  • Disadvantages: Business R&D needs to focus on some database operations; however, this will require sacrificing some businesses sometimes; the larger the product scale, the harder the implementation.

In the database optimizing process, R&D teams tend to neglect database use on the business layer. Some optimization schemes can serve as standard criteria for development. Here we only list a few common optimization options.

  • Delayed loading: When the system presents many pages, a single entity only presents a part of the content. Therefore, the system loads the content on demand to reduce database pressure and save the network traffic. Delayed loading can also reflect in the design of database table splitting.
  • Appropriate caching to sacrifice space for time: We do not need to load a lot of non-real time contents or contents in the data dictionary from the database in real time. You would only need to load them into memory before use and retrieve the contents from the memory for actual use.
  • Reducing unnecessary open connections (connection pools, batch queries, and commits): For most web applications, the connection pool has greatly reduced the overhead of the system for establishing connections to databases. In the query and commit scenarios, merging multiple tasks into one database operation can also greatly improve the efficiency of database usage.
  • Using optimistic lock for high concurrency: Compared with the pessimistic lock of databases, the optimistic locks implemented on the business layer cannot only reduce lock competitions but also reduces the database lock overhead, thereby improving the database usage efficiency.
  • Breaking down large transactions: The database's guarantee of atomicity for large transactions is an overhead that needs specific attention. During business use, trying to splice large transactions into small ones, or employing asynchronous committing appropriately can streamline the transaction volume.
  • Reasonably using join: In the execution plan of databases, there is a norm, "the simpler, the faster." Therefore, through appropriate data redundancy design, or batch query on the business layer and then data assembly in the memory, we can reduce the SQL complexity of the database, resulting in benefits for the implementation efficiency of databases and optimization of execution plans.

Maximizing the Potential of a Database: Optimizing the Execution Plan of Databases

  • Scenario: The concurrency is not high and the data size is not large, or the overall system pressure is low. There are only a few business points, with poor performance.
  • Advantages: Mining the database with greater potential without changing the basic conditions.
  • Disadvantages: DBA assistance or an R&D team to conduct research on the execution plan of the database.

The optimization of the execution plan often relates to the operation mechanism and underlying design of the database, so it is difficult to provide a clear explanation in a single blog article. We will just list a few optimization schemes from which we have gained extensive benefits. We recommend paying more attention to and analyzing the performance reports and suggestions in the iDB Cloud console when optimizing the execution plan. Thereafter, consult with Alibaba Cloud DBAs more often, by issuing tickets. If you are interested and eligible, your DBA can also make an appointment for site study with Alibaba Cloud. Additionally, the optimization of the execution plan requires a lot of debugging work. Through creating a temporary instance of the production database in the Alibaba Cloud console, you can accurately simulate the data structure, distribution, and pressure of the current system.

Field Type Selection

Selection of a reasonable field can often greatly reduce the size of row data in the database, and substantially improve the index matching efficiency, thus greatly enhancing the database performance. Using smaller data types, such as date instead of datetime for the date, tinyint instead of smallint or int for the type or label, and fixed-length fields instead of non-fixed-length fields (such as char instead of varchar) can all more or less reduce the data row size and improve the hit rate in the database buffer pool. The type selection of the primary key, a special member of the table fields, will generate a huge impact on the table index stability and efficiency. We generally recommend you to consider a unique value that is auto-incremented in the database or one frequently maintained by the database independently.

Indexing for Highly Separated Fields

Highly separated fields always mean precise or partially precise conditions for queries. It is a scenario relatively easier to optimize – just to index the highly separated fields independently. We need to explore more details during the actual use. As business scenarios become more complex, the precise conditions priority principle will be more effective as an optimization solution. Although indexing highly separated fields independently will boost the efficiency significantly, too many indexes may affect the table writing efficiency. For effective indexing, refer to the suggestions on large table indexing in iDB Cloud.

Covering Index

Plainly put, covering index means that the execution plan can complete the data query and result set acquisition through indexes without returning the table (to the buffer pool or disk to look for the data). Due to restrictions of the MySQL index mechanism, the system will only utilize one query, or two indexes through index_merge. This means that in complex business scenarios, it may not be that helpful to establish indexes for every field alone. Therefore, for some specific query scenarios, we should establish appropriate index combinations. The application of covering indexes can avoid a large number of random I/O requests, therefore be a more recommended optimization scheme (if the execution plan contains Using Index in the Extra of Explain, it indicates the use of covering index).

However, the actual businesses are always more complicated than the index itself. There is always a lot of field information that the system needs to search for or obtain, yet the index combinations cannot cover all the fields (otherwise, we will have a huge index that is even greater than the data itself). In order to apply covering index, you need to leverage the deferred joins of the primary key. Specifically, you need to first make queries and get a smaller result set (result set-oriented principle) through the field conditions contained in the combination index. The result set only contains the primary key fields and the data tables can be joined through the obtained primary key queue.

Moderate Compromise

Reacting to Demands: Upgrading the Configuration

  • Scenario: The performance issues is pressing, but the team has limited time and resources.
  • Advantages: It is simple, straightforward and acts fast, applicable to any optimization stages.
  • Disadvantages: It increases costs and only serves as a temporary solution. It just delays the second outbreak of the problem. Resources always have an upper limit, and eventually, there will be no room for further upgrading.

General business-based R&D teams have difficulty spending additional effort on the database, and there are no professional DBAs to constantly tune the database configuration and optimize the performance of the database servers. As such, there are not many options left for the team at an earlier stage. It is hard for them to explore technical solutions in depth, and the only option is to exchange cost for time. The simplest solution is to upgrade the server configuration to cope with insufficient performance.

However, upgrading the configuration of a self-deployed database requires not only the adjustment in the database configuration parameters but also being subject to the physical limitations of the machines. Therefore, it is necessary to devise a more complex backup and synchronization policies for the database. Note that this approach may not be realizable within a short term for the business team, and configuration upgrades can become a complex problem. Nevertheless, we have utilized the elastic upgrading policy of RDS and we feel that it is the best solution to this problem.

The Pareto Principle

In our extensive experience of optimizing databases and the entire product at large, we noticed that a perfect solution is hard to come by. Even if a solution you select can solve only 80% of the problems it will greatly enhance the overall efficiency of the team. The evolution and optimization of products and architecture is a gradual process; we have to proceed one step at a time. Based on the Pareto principle, addressing the top 20% root causes first can help us achieve a solution that solves 80% of the problems.

Summary and Outlook

As a technical developer in a start-up company, I have summarized the advantages of using cloud-computing products through my experience with Alibaba Cloud products as follows:

  1. Convenient elastic upgrading of servers to cope with big promotion scenarios, such as the Double 11, at any time. In comparison, a traditional IDC-managed mode involves cumbersome physical machine maintenance and upgrades, as well as data migration after upgrades.
  2. Mature and reliable data backup and snapshot mechanisms, and the underlying schema of master-slave separation and synchronization of databases. Entrepreneurship teams do not have to bear the cost of reinventing the wheel but can instead focus on business development.
  3. Alibaba Cloud computing products have undergone rigorous tests, providing robust and trustworthy security protection.
  4. The size of the entrepreneurial team can be minimized. With a cloud-computing platform as well as professional technical support and services, database and server administrators are no longer required in the entrepreneurial team.

In addition to the experience in using cloud products, we have also discussed on various database-tuning practices. Regarding database architecture design and performance optimization, our team adheres to the principle of divide and conquer, solving primary problems gradually and then tapping into the details, round after round. Consequently, the system architecture is also evolving in the process. I believe that over time, several other solutions will be made popular. Especially with the continuous development of cloud services, the effort and cost invested will reduce significantly. These factors will lead to a more focused business research and development team, creating more innovative Internet products and the reshaping the way that businesses are run.

1 1 1
Share on

Alibaba Clouder

2,605 posts | 746 followers

You may also like


Raja_KT March 2, 2019 at 6:13 am

It makes me think of PolarDB.

Alibaba Clouder

2,605 posts | 746 followers

Related Products